ViCBiostat

Introduction to Pharmacoepidemiology

9 September 2012
University of South Australia, Adelaide

M. Alan Brookhart, PhD
Associate Professor of Epidemiology
UNC Gillings School of Global Public Health
Adjunct Associate Professor of Medicine
UNC School of Medicine
University of North Carolina

With the growing availability of large healthcare databases, non-experimental studies of prescription medications are becoming increasingly common. However, appropriate design and analysis of such studies can be challenging. In this workshop we provide an intensive introduction to the field of pharmacoepidemiology. We review the data used in pharmacoepidemiology and the central threats to validity of studies medications, including the healthy user bias, immortal person time bias, and various types of confounding bias. We then discuss approaches to mitigate these biases through design and analysis. The workshop will cover the comparative new user design, self-controlled designs, propensity score methods, and instrumental variable approaches. We will also discuss some additional topics in the field, including studies of medication adherence, disparities, and active safety surveillance of medical products.

Timetable

Time	Topic
8:15-8:50	Registration
8:50-9:00	Welcome and introduction
9:00-9:30	A brief introduction to pharmacoepidemiology
9:30-10:40	Confounding and other biases in non-experimental studies
10:40-11:00	Coffee break
11:00-12:15	Propensity scores
12:15-1:15	Lunch
1:15-2:30	Instrumental variable methods and natural experiments
$\mathbf{2 : 3 0 - 2 : 5 0}$	Coffee break
$\mathbf{2 : 5 0 - 4 : 0 0}$	Studies of prescribing and adherence, and general discussion

Dr M. Alan Brookhart is an Associate Professor of Epidemiology and Medicine at the University of North Carolina at Chapel Hill. He completed a PhD in Biostatistics at the University of California, Berkeley, and held postdoctoral appointments at the Harvard Medical School and Brigham and Women's Hospital, Boston, before taking up his position at the University of North Carolina. His research is focused primarily on the development and application of new statistical methods and study designs for epidemiologic studies of medications using large clinical and healthcare utilization databases. In this area, he has made contributions to the development of quasi-experimental and instrumental variable approaches that can be used to estimate causal effects in the presence of unmeasured or poorly recorded confounding variables. He has also been involved with the development of propensity score and marginal structural model methodology and has also developed new epidemiologic approaches for studying medication adherence and use of healthcare services. Substantively, he is interested in the effects of medications in the elderly and patients with end-stage renal disease.

Date: Sunday 9 September 2012 9.00am - 4.00pm
 Venue: Room C3-16, University of South Australia, City East Campus, Corner of North Terrace and Frome Road, Adelaide

\qquad

Learning Objectives

- To understand the scope of the field of pharmacoepidemiology
- To understand why we need observational/nonexperimental studies of drugs
- To understand commonly used sources of data for pharmacoepidemiology

Pharmacoepidemiology
- Study of the use of and the effects of
drugs in large numbers of people
Strom, Kimmel: Textbook of
Pharmacoepidemiology 2006

\qquad

Why do we need observational studies of drugs or medical products?

- Clinical trials provide gold standard evidence of drug effects
- Problems with clinical trials
- Expensive
- Small
- Often drugs are compared against placebo
- Exclude elderly, children, pregnant women, patients with important comorbidities \qquad
- May be unethical
- Not timely
© MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebocontrolled trial
- Enrolled patients $40-80$ with some CV risk factors or diabetes
- Excluded patients with kidney disease, liver disease, life threatening condition (other than diabetes) such as COPD, cancer (other than nonmalignant skin cancer)
- Excluded patient who might have a problem with compliance (psychiatric disorders, cognitive impairment, dementia, disabling stroke, etc)
- Less than 20% of patients were over 70
@ Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial
- Enrolled patients 70-82 with some vascular risk factors
- Excluded patients with cognitive impairment

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of Need for Non-experimental CER: Antipsychotic Medications (APM) in the Elderly

- APMs approved to treat schizophrenia
- Widely used off-label to treat elderly patients with dementia
- Two broad classes: conventional (older drugs) versus atypical (newer drugs)
- Manufacturers of some of the atypicals conducted trials to assess effectiveness of the medications for controlling behavioral disturbances in elderly
- FDA meta-analysis: increased risk of mortality associated with atypical APMs (relative to placebo)
- FDA put a "black box" advisory on label of atypical APMs

Clinical Dilemma

- Should physicians switch patients to the first generation APMs?
- Older APMs have many known side effects, poor safety profile
- Head-to-head trial will never be not be done
- Practically difficult
- Ethically impossible
- Question must be answered by analyzing existing data

Increasing interest in "Comparative Effectiveness Research" in US

"Conduct and synthesis of research comparing the benefits and harms of different interventions and strategies to prevent, diagnose, treat and monitor health conditions in "real world" settings. The purpose of this research is to improve health outcomes by developing and disseminating evidence-based information to patients, clinicians, and other decision-makers, responding to their expressed needs, about which interventions are most effective for which patients under specific circumstances."
--Report to President and Congress, Federal Coordinating Council For CER

Most trial are placebo-controlled, rather than comparative

- JUPITER trial randomized 17,800 people with elevated high-sensitivity C-reactive protein, but normal lipids
- Patients assigned to receive placebo or highpotency rosuvastatin therapy

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Would other less expensive statins provide a similar benefit in this population?

Ridker et al, Rosuvastatin to prevent vascular events in men and women with elevated C-reactive Protein. NEJM 2008

Randomized Comparative Studies

ORRIINLLCONTRIBUTION JAMA-EXPRESS
Major Outcomes in High-Risk
Hypertensive Patients Randomized to
Angiotensin-Converting Enzyme Inhibitor
or Calcium Channel Blocker vs Diuretic
The Antihypertensive and Lipid-Lowering Treatment
to Prevent Heart Attack Trial (ALLHAT)

- 33,357 patient randomized to one of three antihypertensives: ACEIs, Thiazides, CCBs
- Patients had hypertension and at least one CV risk factor
- Followed between 3-8 years
- Outcome: Blood pressure and major CVD events

- Thiazide diuretics as good as or superior to ACE Inhibitors and CCBs for all outcomes
- Established guideline for management of hypertension that are still used
- AllHat took 8 years to complete and cost $\$ 130$ million

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What data can we use for non-experimental studies?

- Large cohort studies
- Usually prospective or ongoing
- Healthcare and clinical database
- Disease registries
- Cancer (SEER)
- Drug registries
- E.g., antiretrovirals, biologics

Desired Qualities of a Database

- Representative
- Large
- Timely (i.e., up to date)
- Continuity
- Individual observations
- Calendar time \qquad
- Linkage on unique identifier
- Accessible \qquad
- Without delay
- Over prolonged periods (intimate knowledge of data)
\qquad
- To everyone

Desired Contents of Database

\qquad

- All use of prescription drugs and over-the-counter (OTC) drugs
Outpatient, inpatient, emergency care and reasons for visit
- Patient health-related behaviors
- Smoking
- Diet and exercise

Indication for treatment

- Clinical variables
- Diagnoses
- Radiographic
- Function (RR, ejection fraction)
- Other determinants of treatment
- Prescriber
- SES

Cause-specific mortality

- Patient reported outcomes (QOL)

Healthcare and clinical databases

- Large N (often >> 1,000,000)
- Often population based
- No recall/interviewer bias
- Timely results
- Regulatory
- Commercial
- Public Health \qquad
- Growing use to assess
- Unintended and intended drug effects

Insurance Claims Databases

- Billing data from payors
\qquad
- Closely audited
- Dispensed (filled) prescriptions
- Best data on drug exposure in PE
- Diagnostic data potentially dependent on financial incentives (system/country specific!)
\qquad
- Inpatient DRGs
- Outpatient procedures
- Age, sex
- Often race, income, mortality
- US e.g., MarketScan, IMS, i-3, Medicaid, Medicare

Examples of Claims Databases in US

\qquad

- Medicaid
- ~ 50 million lives
- Low income pregnant women and families
- Chronic disabilities (e.g., ESRF)
- Low-income seniors
- Medicare
- All 65+
- Part D (drug insurance)
- Since 1/1/2006
- $\sim 1 / 3$ FFS (individual dispensed prescriptions)
- Available to academic centers for research (UNC)
- Pharmacy assistance programs

Limitations of Healthcare Databases

- Uncertain validity of diagnostic data
- Lack of data on confounders, but
- Depending on specific hypothesis
- Validation studies (external control)
- Sensitivity analyses
- No OTC drugs
- NSAIDs including aspirin
- PPIs
- Others (e.g., orlistat)
- US: High turnover of population < 65
- Formularies, deductibles
- Missing dispensing prescription drugs

Other Things to Worry About

- Outcome not reliably coming to medical attention
- E.g., diabetes (vs. MII, stroke)
- Lethal outcomes (e.g., MI, suicide, injury)
- Immeasurable drug exposures
- Inpatient
- Nursing home
- Strong confounding
- Association with exposure
- Association with outcome
- Prevalence
- Large OTC proportion
- Poorly defined outcomes

Electronic medical record databases \qquad

- Advantages
- High validity of diagnostic data \qquad
- Some information on lifestyle
- Some test results (e.g., laboratory, RR) \qquad
- Disadvantages
- Uncertain completeness of diagnostic data \qquad (out of system, hospital, specialist)
- Prescribed drugs (not: filled - one step \qquad removed from taking)
- Drug lists vs. e-prescribing
- Various coding systems (including: none!)

\qquad

Healthcare Databases from Outside US

- Canada
- Saskatchewan
- ~ 1 million lives (whole province)
- Famous hole for drug data July 1987 - Dec 1988

Quebec RAMQ (approx. 45% of adult population)

- Netherlands
- PHARMO
_ Rotterdam lives covered
- Rotterdam Study

UK. Cohort with linked pharmacy records
UK

- GPRD
- THIN \quad million lives covered
- Scotland
- Tayside medicines monitoring unit (MEMO)
- Scandinavia (Denmark, Sweden, Norway)
- Whole population
- Several millions

Disease, Device, and Drug Registries

- Systems that collect data on patients with diagnosed with a disease, who have received a certain procedure, medical device, of medication
- Sometime these are simply include baseline data collected at the time of enrollment
- Sometimes these include detailed followup information, outcomes

Westphalian Stroke Registry

- Regional data bank in northwestern Germany
- All patients treated for stroke symptoms who were admitted to the participating 42 hospitals.
- Collected variables include sociodemographic characteristics, cerebrovascular risk factors, comorbidities, stroke type, and diagnostic data
- Treatment information
- Complications and discharge status

SEER Cancer Registry in US

- SEER=Surveillance, Epidemiology, and End Results
- Collecting data since 1973 from regions covering about 28% of US
- Collects data on patient demographics, primary tumor site, tumor morphology and stage at diagnosis, and first course of treatment
- No follow up other than date of death obtained from vital statistics

Many Other Examples

- Many countries have registries to track patients with artificial joints
- Many other device registries
- CABG and stent registries
- Transplant receipt registries
- Many drug registries in US are required as part of post-marketing surveillance

Registry Strengths

- Usually contain rich, clinically relevant baseline data
- Sometimes contain detailed clinical followup data

Registry Limitations

- Sometime these are simply include baseline data collected at the time of enrollment
- Follow-up data are often coarse, do not contain good information on treatment changes
- Drug device registries often lack a control group
- Available only on a segment of the population
- Often small

Future Directions

\qquad

- Database linkage
- Add claims data to cohort studies
- Easy to get informed consent
- E.g., ARIC, WHI, Rotterdam
- Internal validation studies
- Add additonal information for subgroup
- E.g., Medicare Current Beneficiary Survey (MCBS)
- Add disease registries to EMR data
- E.g., cancer registry
- Add PROs (collect during office visit)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Learning Objectives

- To understand how confounding bias arises in studies of therapeutics
- To understand the characteristics of the new user design and how they mitigate many forms of confounding bias
- To recognize immortal and unexposable person time bias and know how to avoid these problems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Case Study: Statins and Primary Prevention of Myocardial Infarction

\qquad

- Statins are safe and widely used cholesterol lowering agents
\qquad
- Prescribed to patients at risk of CAD or with existing CAD
- Study among Medicare/PACE enrollees in PA, 1995-2002 \qquad
- All hospitalizations discharge data and physician office data
(ICD-9 coded diagnoses and procedure codes)
- Merged with pharmacy claims
- Identified 38,046 new users of statins (w/ no hx of MI)
- Matched these by calendar time 1-1 to non-users of statins (w/ no hx of MI)
\qquad

Outcome was time until hospitalization for acute MI (within
\qquad one year)

\qquad
\qquad
\qquad

Multivariable Cox PH Model

- Next we adjusted for age, sex, and 30+ covariates abstracted from the claims data: history of co-morbid conditions, history of medication use, Charlson index, etc.
- Result: Hazard Ratio = 1.21 (95\% CI 1.09-1.36)
- Clearly, residual confounding not controlled.

SSRI Antidepressants and Suicide

\qquad

- Fluoxetine (Prozac) the first SSRI-type anti-depressant (AD)
- Released in the US in 1988 and marketed as being safer and more effective than older ADs
- There were reports of suicide and violent behavior among patients recently started on Prozac (from older ADs) (Teicher MH, Glod C, Cole JO. 1990 Am J Psychiatry)
- Newly initiated patients were likely those that had failed on an older treatment
- Confounding by disease severity

Protopathic Bias

- Closely related to CBI
- An early, undiagnosed form of disease leads to a treatment of early conditions
- Disease is subsequently recognized
- Exposure appears to cause disease

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Healthy Behaviors Often Associated with

\qquad Benefits not Substantiated in RCTs

- Hormone Replacement Therapy
- Observational Result: HRT associated with a 30\% reduced risk of AMI
- RCTs: HRT associated with a increased risk of MI, stroke, and breast cancer.
- Vitamin E in women
- Observational research: $30 \%-40 \%$ decrease in risk of cardiovascular outcomes attributable to Vitamin E use
- RCT: No benefit. (Lee et al, JAMA 2005)
- Many other examples

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Fanctional/ Cognitive
Impairment
be abte to easaily not
visit physician,
pharmacy
\downarrow
Preventive Therapy
\qquad
\qquad

Functional status is a confounder of the

 association of influenza vaccine and risk of all cause mortality in seniorsLisa A Jackson ${ }^{1,2,2, ~ J e n n i f e r ~ C ~ N e l s o n, ~}{ }^{1,3}$ Patiti Benson, ${ }^{1}$ Kathleen M Neuzil, ${ }^{4}$ Robert J Reid, ${ }^{1}$
Bruce M Psaty ${ }^{1,2,4,5}$ Susan R Heckbert, ${ }^{1,2}$ Eric B Larson ${ }^{1,4}$ and Noel S Weiss ${ }^{2}$

- Influenza vaccine found to be associated with decreased mortality risk during the non-flu season
- Statistical adjustment for functional status attenuated this relation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Informative Treatment Changes:
Medication Intolerance / Treatment Failure
Adverse Effect,
Lack of Efficacy
Medication Change

Summary

- Relative to non-users, prevalent users are more likely...
- to have an indication for treatment
- to follow a healthy lifestyle
- to be cognitively and functionally intact
- to not have other, serious comorbidities
- to tolerate the medication and derive benefit from it

New User Design

- New User Design proposed by Ray et. 2003
- Compare new users of a medication of interest to new users of a comparator drug/no treatment
- Requires no use of either therapeutic or comparator drug
- Pairs naturally with propensity score methods to control confounding by baseline factors

\qquad
\qquad
\qquad

New User Design

- Identify all people initiating treatment in a defined population (people and time)
- Define minimum period without drug exposure (wash-out) prior to t_{0}
- Make sure you would see drug (in system)!
- Include everyone meeting these criteria
- Start follow-up as of this time t_{0}
- Define all covariates up to t_{0}
- You may want to include t_{0}
- Use same length interval for covariate definition for everyone (e.g., wash-out)

Permits Study of Early Events

- Period after initiation often associated with increased risk (Guess 89)
- Benzodiazepines and falls
- NSAID and peptic ulcer
- ACE-inhibitors and angioedema
- Depletion of susceptibles
- Physiologic adaptation
- Selection (adherence) bias = healthy user

New User vs. First Time User

- First ever exposure would be ideal
- Possible with drugs new on the market
- Rarely ever possible with older drugs \qquad
- Wash-out period
- Usually plausible
- Not for serious acute events (anaphylaxis)
- Same problem as in RCT
- Make sure you mention that new users may not be first time users (drug naïve)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

New Users Design Separates

 Confounders from Intermediates- Confounders influence treatment choice
- Intermediates are affected by treatment and subsequently affect outcome No way of separating these in prevalent users cohort
- Example:
- Statins and LDL
- Antihypertensives and blood pressure

Disease Risk Factors

\qquad

- New user design
- Everything up to t_{0} is a potential confounder
- Control for measured confounders
- Even more obvious with propensity scores
- What affects treatment choice?
- What risk factors affect treatment choice \qquad
- Everything after t_{0} is a different animal
- Ignore \qquad
- Use other methods, e.g., MSM

Follow-up

- Obvious timescale (t_{0})
- Reduce healthy adherer (sick stopper) bias by using comparator drug if possible
- Decide on censoring for stopping/switching
- Last prescription + days supply + grace period
- No censoring
- First exposure carried forward
- Intention-to-treat
- Stratify by time on drug to detect time-varying hazard ratios

New User Design with Active Comparator

- Can either compare new users of a drug of \qquad interest to users of a comparator drug (active comparator)
- Often specified by research question (comparative effectiveness)
- "Is drug A safer or more effective than drug B?'
- Or can be a mechanism to control confounding \qquad
\qquad

Limiting confounding by design:

\qquad Comparative New User Design

Strengths of Active Comparator

- Reduce confounding by indication
- Clinical alternative
- Similar point in disease progression
- Problem: step-up therapies (but reality often better than expected, e.g., TNF- α vs. MTX)
- Reduce confounding by frailty
- Similar medicalization/access
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comparator Drug Examples

- Glargine vs. NPH insulin
- ARB vs. ACE
- TNF-a vs. MTX
- Rosiglitazone vs. Pioglitazone \qquad
- Sulfonureas vs. metformin
- Etc. \qquad
\qquad
\qquad

Problems: Many drug may not have a logical comparators

\qquad

- Statins
- Vaccines
- One approach: use a drug with a different indication (e.g., anti-glaucoma drugs comparator for statins)
- Reduce confounding by frailty, healthy user effect, etc
- Problem indications are different, may not reduce confounding by indication
- Another approach: use the date of a physician visit

Strengths of the New Users Design

- Both groups are new users and thus similar:
\qquad - Health seeking behavior, cognitive and physical functioning, etc
- Proper choice of a control can minimize confounding by indication
- Can study events that occur immediately after follow-up
- Groups are not enriched patients tolerant of medication
- Temporal separation of covariates and exposure

Limitations of the New Users Design

- Ideal for healthcare databases \qquad
- Exposure and covariate information on day to day basis
- Difficult in cohort studies where exposure not well ascertained
- Limits sample size considerably, but
- Less bias, wider CI
- Much better coverage probability!
- Limits ability to assess long term effects
- Gives more weight to short term users

Alternative Design: follow-up begins after an index event

- Typically index date is a sentinel event, e.g., a diagnosis or hospitalization
- Interested in assessing effects of medication in patients who have experienced the event
- Post-MI medication use
- Index date: discharge from hospital
- Assess use of statins, ACE Inhibitors, etc
- Examine effect on outcome

Common Source of Bias in Study Design

- Hypothetical study design
- Identify post-MI patients
- Determine whether they start post-MI meds in the thirty days after hospital discharge, classify them as exposed or unexposed
- Examine survival by treated versus untreated

Immortal Time Bias

- Study design creates time in which an outcome could not occur
- Usually occurs before a subjects starts treatment
- Often unintentionally created by restricting on an event that happens during follow up

Solution to Immortal Time Bias

- Do not select cohort based on events occurring during follow-up
- Or apply selection to everyone
- Create an exposure ascertainment period that everyone mu
- Have a common index date and make exposure time-varying
\qquad

Immeasurable Time Bias
- Time when exposure cannot occur or be
observed
- Hospitalizations, acute care stays
- Often leads to exaggerated benefits of treatment

\qquad

Learning Objectives

- To understand the concept of a counterfactual and a causal effect
- To understand how propensity scores can be used to estimate causal effects
- To understand a variety of practical issue involved with propensity score methods
\qquad
\qquad

Ex: Non-steroidal anti-Inflammatory drugs and peptic ulcer disease risk in routine practice

- Compare risk of Gl outcomes in between
- Non-selective NSAIDs
- COX-2 selective NSAIDs ("Coxibs")
as they are used in a routine practice setting (the "real world")
- In trials, coxibs were slightly less likely to cause GI problems
- What is the benefit of Coxibs in a real world patient population?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Counterfactuals

\qquad
\qquad

- $\mathbf{Y}(1)$ and $Y(0)$ are "counterfactual" or potential outcomes
\qquad identify optimal treatment for everyone
- Unfortunately, we only observe one potential outcome fundamental problem of causal inference
- Causal inference is similar to analysis of censored data \qquad
- Denote observed outcome \mathbf{Y}, and observed treatment with \mathbf{X}

Causal Parameters/Contrasts

- Let \mathbf{Y} be an indicator of whether a patient experienced the outcomes during follow-up (a zero or one variable)
- Causal risk difference $E[Y(1)]$ - $E[Y(0)]$
- Interpretation: risk of outcome if everyone had been treated minus risk of outcome if nobody had been treatment
- Causal risk ratio $\mathrm{E}[\mathrm{Y}(1)] / \mathrm{E}[\mathrm{Y}(0)]$
- Interpretation: risk of outcome if everyone had been treated divided by the risk of outcome if nobody had been treatment
- These tell us about treatment effects in a population but not individuals

Estimating Distributions of Counterfactuals

- We can estimate distributions of counterfactuals in idealized RCTs (fully blinded, perfect compliance, etc)
- No systematic difference between experimental units across arms of the trial
$Y(1), Y(0)$ are independent of (unrelated to) treatment arm assignment
$->$ The distribution of $Y(1)$ is the same as the distribution of Y among those randomized to receive treatment

Can estimate $\mathrm{E}[\mathrm{Y}(1)]$ with the mean of Y among those assigned to treatment

Key Problem in Observational Studies

- In observational/non-randomized studies the key assumptions
$Y(1), Y(0)$ are independent of (unrelated to) treatment arm assignment
does not hold.
- For example, Coxib treatment may be more likely to be assigned to patients at greater risk of Gl complications
- We say that treatment is "confounded."
- $E[Y(1)]$ not necessarily equal to $E[Y \mid X=1]$

Causal Inference

- Causal inference is concerned with estimating readily interpretable causal contrasts from observational data
- In other words, estimating parameters that we would (or could) estimate in a randomized controlled trial
- As we will see, sometimes these cannot be easily estimated and we must settle for alternative quantities

Key assumption for causal inference No unmeasured confounders / exchangeability
$Y(1), Y(0)$ are independent of treatment (X) given the confounders (C)
C is a set of variables (age, sex, history of GI bleed, etc)

Among people with the same values for the confounders, treatment is effectively randomized.
Estimating Causal Effects by Stratification
Within small subgroups/strata of confounders
(patients with a specific set of characteristics, we
denote with $\mathrm{C}=\mathrm{c}$, e.g. Age=72, Gender=female,
History of Gl bleed=0, etc)
Under no unmeasured confounding, we can
estimate within-strata causal effects
$E[Y \mid X=1, C=c]=E[Y(1) \mid C=c]$
$E[Y \mid X=0, C=c]=E[Y(0) \mid C=c]$
We can then average these to get average causal
effects, e.g., $E[Y(1)-Y(0)]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Propensity Score Theory

Propensity score is the probability of receiving treatment given C

$$
\operatorname{PS}(C)=\operatorname{Pr}(X=1 \mid C)
$$

If all confounders are measured, Rosenbaum and Rubin show
$Y(1), Y(0)$ are independent of X given $P S(C)$
Among people with the same propensity score, treatment is effectively randomized.

Estimating the Propensity Score
Propensity scores are not know--must be
estimated
$\operatorname{Pr}[X=1 \mid C]=$ expit $\left(b_{0}+b_{1}\right.$ age $\left.+b_{2} s e x+b_{3} C H D+\ldots\right)$
For each patient a predicted probability of
receiving treatment is computed -- the
estimated PS

 \(\ldots\),
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods of Using the PS

- Covariate adjustment (not optimal)
- Stratification on PS
- Matching on the PS
- Weighting on the PS (e.g., IPTW)
- Hybrid approaches: combine matching with multivariable regression (Cochran and Rubin) \& doubly robust estimators (Robins)

Stratification on the Propensity Score

- Treatment effects are estimated within strata of PS
- Treatment effects averaged across strata
- This yields an estimate of the average effect of treatment
- Subject to residual bias within strata

Matching on the PS

- Match exposed to unexposed with similar PS
- Subjects who cannot be matched discarded
- Creates good balance of measured covariates
- Greedy matching techniques (http://www2.sas.com.proceedings/sugi26/p214-26.pdf)

Matching on the PS, cont.

- Limitation of matching
- May lose many participants
- Individuals in the tails of the distribution can be difficult to match
- Generalizability: The effect of treatment may be different in those participants that cannot be matched.
- Interpretability—not always a causal parameters
\qquad
\qquad
\qquad

Inverse Probability of Treatment Weighting \qquad (IPTW)

- Each subject weighted by the inverse of the probability that they received their observed treatment
- Inverse probability of treatment (IPTW) estimator
- Fit a standard regression, but weight by

1/PS(X), in treated patients
$1 /(1-P S(X))$, in untreated patients

IPTW estimates the average effect of treatment in the population

Absolute Scale (e.g., Risk Difference)

$$
R D=E[Y(1)]-E[Y(0)]
$$

Relative Scale (e.g., Risk Ratio)

$$
R R=E[Y(1)] / E[Y(0)]
$$

This contrasts with other treatment effects (treatment in the treated)

$$
R D_{T T}=E[Y(1) \mid X=1]-E[Y(0) \mid X=1]
$$

Experimental Treatment Assignment

Assumption

- Everyone must have a non-zero probability of being treated or not

$$
0<\operatorname{Pr}(X=1 \mid C)<1
$$

- Even small violations of this assumption \qquad can cause bias

Poorly Defined Populations

- Populations in pharmacoepi are often illdefined
- If patients with contraindications are treated, may get hugely up-weighted
- Cause IPTW to give peculiar results

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SMR Weight

- Weighting method uses a standardized mortality/ morbidity ratio (SMR) weight :
- Value of 1 in the treated
- Propensity odds in the untreated, $\mathrm{PS}(\mathrm{X}) /(1-\mathrm{PS}(\mathrm{X}))$
- This weighting approach uses the treated group as the standard \qquad
- Yields the effect of "treatment among the treated." \qquad
- $\mathrm{E}[\mathrm{Y}(1)-\mathrm{Y}(0) \mid \mathrm{X}=1]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doubly Robust Estimators

- Depends on both an outcome model and propensity score model
- More efficient than IPTW
- Estimate is consistent as long as at least one model is correctly specified!
- Does not depend on the experimental treatment assumption when outcome model is correct \qquad
- Emerging methodology: Targeted maximum likelihood

Motivating Example:
 Observational Study of Non-steroidal AntiInflammatory Drugs and GI bleeding risk in an elderly population

\qquad

- Compare risk of GI outcomes in elderly between
- Non-selective NSAIDs
- COX-2 selective NSAIDs
- Coxibs are slightly less likely to cause GI problems
- Coxibs are likely to be selectively prescribed to patients at increased GI risk
- Classic problem of confounding by indication
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data

- Population: Medicare beneficiaries in Pennsylvania eligible for a state run pharmaceutical benefit program (PACE)
- Low to moderate income elderly
- Cohort of new users of COX-2 inhibitors or non-selective NSAIDs between Jan. 1, 1999 and Jul. 31, 2002 - Yielded $\mathrm{N}=49,919$
- Drug exposure came from pharmacy claims data, ITT analog
- Outcomes and covariates were derived from Medicare hospital claims data
- Outcome was defined as a hospitalization for peptic ulcer disease or GI bleeding during follow-up (60-days)

| Characteristics of Cohort | |
| :--- | :---: | :---: |
| \qquadVariable Coxib NS NSAID
 Female Gender 86% 81%
 Age > 75 75% 65%
 Charlson Score>1 76% 71%
 History of Hospitalization 31% 26%
 History of Warfarin Use 13% 7%
 History of Peptic Ulcer Disease 4% 2%
 History of GI Bleeding 2% 1%
 Concomitant GI drug use 5% 4%
 History GI drug use 27% 20%
 History of Rheumatoid Arthritis 5% 3%
 History of Osteoarthritis 49% 33% | |

Counterfactuals
$Y(0)$ outcome a patient would experience if given NS NSAIDs
$Y(1)$ outcome a patient would experience if given Coxibs
Treatment Effects on Absolute Scale (e.g., Risk Difference)
$R D=E[Y(1)]-E[Y(0)]$
Treatment Effects on Relative Scale (e.g., Risk Ratio)
$R R=E[Y(1)] / E[Y(0)]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Analysis

- Estimated PS using logistics regression
- Using 17 a priori selected covariates: Gl risk factors and measures of frailty. Also included calendar year.
- PS Model yielded a c-statistic of 0.67
- Matched on estimated PS using a greedy matching algorithm to create a PS matched cohort ($\mathrm{N}=33,526$)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assessing Balance Using Matching				
	Unmatched ($\mathrm{N}=49,919$)		PS Matched ($\mathrm{N}=33,526$)	
Variable	$\begin{gathered} \hline \text { Coxib } \\ \text { Users } \\ (32,273) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NS NSAID } \\ \text { Users } \\ (17,646) \end{gathered}$	$\begin{gathered} \hline \text { Coxib } \\ \text { Users } \\ (16,763) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { NS NSAID } \\ \text { Users } \\ (16,763) \\ \hline \end{gathered}$
Female Gender	86\%	81\%	82\%	83\%
Age > 75	75\%	65\%	68\%	67\%
Charlson Score>1	76\%	71\%	72\%	71\%
History of Hospitalization	31\%	26\%	26\%	26\%
History of Warfarin Use	13\%	7\%	7\%	7\%
History of Peptic Ulcer Disease	4\%	2\%	3\%	3\%
History of GI Bleeding	2\%	1\%	1\%	1\%
Concomitant Gl drug use	5\%	4\%	4\%	4\%
History GI drug use	27\%	20\%	21\%	21\%
History of Rheumatoid Arthritis	5\%	3\%	3\%	3\%
History of Osteoarthritis	49\%	33\%	35\%	35\%

\qquad

NSAIDs \& Gl Bleeds: Results	
Statistical Method	$\begin{gathered} \hline \text { RR } \\ (95 \% \mathrm{CI}) \end{gathered}$
Unadjusted (Crude)	$\begin{gathered} 1.09 \\ (0.91-1.30) \\ \hline \end{gathered}$
Multivariable Logistic Regression	$\begin{gathered} 0.96 \\ (0.79-1.15) \end{gathered}$
Including PS in Regression Model	$\begin{gathered} 0.95 \\ (0.79-1.14) \\ \hline \end{gathered}$
PS Matching	$\begin{gathered} 0.95 \\ (0.77-1.17) \\ \hline \end{gathered}$
$\stackrel{\text { Inverse Probability of Treatment Weighting }}{ }$	$\begin{gathered} 0.87 \\ (0.71,1.06) \\ \hline \end{gathered}$
SMR Weighted Estimator	$\begin{gathered} 0.83 \\ (0.66,1.03) \\ \hline \end{gathered}$

Heterogeneity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ratio-woighted analysess for ischomic stroke patients rogister od

in a Geman stroke registry between 2000 and 2001			
	No.	OR*	95% Cli

Regrosson adiustod with
propensity 5 core
$\begin{array}{llllll}\text { Proponsily score, contiruuus } & 6,269 & 1.53 & 0.95,2.48\end{array}$

| Propensily score, deales | 6.269 | 1.76 | $1.13, ~ 3.72$ |
| :--- | :--- | :--- | :--- | :--- |

 \(\begin{array}{lllll}\text { Mulivarabolot } & 6,269 & 1.96 & 120,3.20\end{array}\)

SMR* weighted	6,269	10.7	$2.477,47.04$
6,269	1.11	$0.67,1.84$	

\qquad
\qquad
\qquad

Coxib Example: Unmeasured Confounding

- Many GI risk factors are unmeasured in health care claims data files
- Tobacco use
- BMI / Obesity
- Alcohol consumption
- Aspirin use
- PS, IPTW methods cannot address this problem

\qquad

Proxies in Claims

- Claims may contain proxies for unobserved confounders
- Lipid-testing important confounder in studies of statins (Seeger, Med Care)
\qquad
\qquad

Can we identify important proxies in healthcare claims?

High-dimensional PS (hd-PS) Algorithm

- The approach:
- Collect as many codes as possible
- Identify those codes that could possibly bias the exposure/outcome relationship
- Combine variables identified a priori with the "best" of these codes in a propensity score.
- Use this "high dimensional propensity score" to adjust for confounding.
- Currently implemented in a SAS macro.

Possible Explanations?

- Coxibs are not GI protective in this elderly population
- High non-adherence
- NS NSAIDs are co-prescribed with GI protective drugs
- Unmeasured confounding

Practical Guidelines
1) Importance of variable selection
- Avoid entering variables not associated with
outcome
- Report \% of exposed that could be matched to
unexposed
2) Look for non-uniform effects over range of PS
- Consider matching, range restrictions, trimming
- Discuss residual confounding vs. treatment
heterogeneity
3)Implementation of PS (modeling, stratification, matching, weighting) minor issue given uniform effects

\qquad

- Avoid entering variables not associated with outcome
Report \% of exposed that could be matched to unexposed

2) Look for non-uniform effects over range of PS

- Consider matching, range restrictions, trimming
- Discuss residual confounding vs. treatment

Implementation of PS (modeling, stratification matching, weighting) minor issue given uniform effects

Discussion / Questions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multivariable Outcome Models

\qquad

Usually to many confounders to stratify over and we must use a model.
Multivariable outcome models are models of an expectation (mean/average value) of an outcome given covariates and treatment.

Linear Regression

$E[Y \mid X, C]=b_{0}+b_{1} X+b_{2} C+b_{3} C^{*} X$
Logistic Regression
$E[Y \mid X, C]=\left(1+\exp \left(-b_{0}-b_{1} X-b_{2} C-b_{3} C^{*} X\right)\right)^{-1}$

Causal Inference From Multivariable Outcome Models

If all confounders are measured (treatment if exchangeable) and model is correct, then model is estimating an expected value of a counterfactual given covariates $E[Y \mid X=1, C]=E[Y(1) \mid C], E[Y \mid X=0, C]=E[Y(0) \mid C]$
One can then average these to get average causal effects (not conditional on C) - see appendix.
Validity depends on getting the model right!

Getting a more meaningful/interpretable estimate

$E[Y(1) \mid C]$ is the expected value of $Y(1)$ given a set of confounders

How do you get from a model for $E[Y(1) \mid C]$ and $E[Y$ $(0) \mid C]$ to causal parameters/contrasts of interest?

For example, the causal risk difference

$$
E[Y(1)]-E[Y(0)]
$$

In English, please?

We can estimate causal parameters of interest using a fit multivariable model.
0) Fitting the multivariable model to the observed data

1) Create a dataset but set $A=1$ for all patients,
2) Using fit model generate predicted outcomes for all patients
3) Take the average of these to estimate $E[Y(1)]$
4) Repeat 1)- 3) but set $\mathrm{A}=0$ for all patients to estimate $E[Y$ (0)]
5) Estimate causal risk difference

$$
R D=\hat{E}[Y(1)]-\hat{E}[Y(0)]
$$

Fitted Model Allows Us to Estimate Other Parameters of Interest

- Can estimate the effect of treatment in the treated (on a risk difference scale)
$E[Y(1) \mid A=1]-E[Y(0) \mid A=1]$
(or relative scale)
$E[Y(1) \mid A=1] / E[Y(0) \mid A=1]$
- Fit model to all patients
- Set treatment to zero for the treated patients, use model to predict outcome in patients, average these to get an estimate of $E[Y(0) \mid A=1]$ \qquad
- Estimate $E[Y(1) \mid A=1]$ using empirical (observed) rate of outcome in the treated

Can Estimate the Effects on a Population of "Treatment Rules"

- Define new counterfactuals
Y ("treat on if on warfarin")=outcome for a patient if he is only treated if he is on warfarin
$Y(1)=$ outcome if treated
$Y(0)=$ outcome if not treated
- Estimate
$E[Y$ ("treat on if on warfarin") $]-E[Y(0)]$

How do we estimate this?

- To estimate $E[Y$ ("treat on if on warfarin")]
- Fit out multivariable model $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}, \mathrm{C}]$
- Create a new dataset with treatment reassigned based on treatment rule
- Use fit model to generate predicted values of the outcome for all patients
- Average these to estimate $E[Y$ ("treat on if on warfarin")]
- Compare this to $\mathrm{E}[\mathrm{Y}(0)]$ as previously estimated

We can use model to estimate counterfactuals in different populations

$E[Y(1)]=\sum_{c} E[Y(1) \mid C=c] \operatorname{Pr}(C=c)$
$E[Y(1)]$ depends on the distribution of the covariates, $\operatorname{Pr}(C=c) .$.

What if the average age in the population were ten years older? We can plug-in an arbitrary distribution of $C, \operatorname{Pr}^{*}(C=c)$, and estimate $E[Y(1)]$

$$
\hat{E}[Y(1)]=\sum_{c} \hat{E}[Y \mid A=1, C=c] \operatorname{Pr}^{*}(C=c)
$$

Major limitation of "G-computation" based on an outcome model

- Outcome model must be correctly specified
- Include all confounders
- Including interactions between covariates
- Easy to inadvertently extrapolate model in to region where there is little covariate data
- Propensity score / inverse-probability of weighting
\qquad methods

Derivation of IPTW $\begin{aligned} & E\left[\frac{X Y}{\operatorname{Pr}(X=1 \mid C)}\right]=E\left[\frac{X Y(1)}{\operatorname{Pr}(X=1 \mid C)}\right] \quad \text { By consistency assumption } \\ & =E\left[E\left(\left.\frac{X Y(1)}{\operatorname{Pr}(C=1 \mid C)} \right\rvert\, C, Y(1)\right)\right]=E\left[\frac{Y(1)}{\operatorname{Pr}(X=1 \mid C)} E[X \mid C, Y(1)]\right. \end{aligned}$ $=E[Y(1)] \quad \begin{gathered}\text { By no unmeasured } \\ \text { confounders }\end{gathered}$ $E\left[\frac{(1-X) Y}{1-\operatorname{Pr}(X=1 \mid C)}\right]=E[Y(0)]$ $R D=E[Y(1)]-E[Y(0)]=E\left[\frac{X Y}{\operatorname{Pr}(X=1 \mid C)}\right]-E\left[\frac{(1-X) Y}{1-\operatorname{Pr}(X=1 \mid C)}\right]$

\qquad

Derivation of IPTW, cont...

$$
\begin{aligned}
& R D=E\left[\frac{X Y}{\operatorname{Pr}(X=1 I C)}\right]-E\left[\frac{(1-X) Y}{1-\operatorname{Pr}(X=1 \mid C)}\right] \\
& R D_{I P T W}=\frac{1}{n} \sum_{i=1}^{n} \frac{X_{i} Y_{i}}{P S\left(C_{i}\right)}-\frac{1}{n} \sum_{i=1}^{n} \frac{\left(1-X_{i}\right) Y_{i}}{1-P S\left(C_{i}\right)}
\end{aligned}
$$

\qquad

\qquad

Learning Objectives

- To understand the assumptions and mechanics underlying instrumental variable estimation
- To understand how to evaluate an interpret an instrumental variable analysis
- To learn about some instrumental variable estimators that have been used in practice
\qquad
\qquad

Donald Rumsfeld the Accidental Epidemiologist
"... there are known knowns; there are things we know we know. We also know that there are known unknowns; that is to say we know that there are some things we do not know. But there are also unknown unknowns - the ones we don't know we don't know. ..., it is the latter category that tend to be the difficult ones."

Instrumental Variable Methods

- Developed and widely used by economists
- Can be used to bound and estimate treatment effects even when confounders are unmeasured
- IV methods depend on the existence of an instrumental variable ("instrument")

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

IV Assumptions Informally

\qquad

- Instrument should be correlated with treatment
- Instrument should be related to outcome only through association with treatment (often termed the exclusion restriction)
- Empirically unverifiable, but can be explored in observed data.

Intention-to-treat (ITT) Approach

In RCTs with non-compliance, as-treated can be biased estimate of the effect of treatment.
ITT estimates the effect of Z on Y

$$
I T T=\hat{E}[Y \mid Z=1]-\hat{E}[Y \mid Z=0]
$$

In placebo-controlled trials, ITT estimates tend to be biased towards the null when there is non-compliance.

Classic IV estimator is a rescaled ITT estimator

$$
\hat{\alpha}_{I V}=\frac{\hat{E}[Y \mid Z=1]-\hat{E}[Y \mid Z=0]}{\hat{E}[X \mid Z=1]-\hat{E}[X \mid Z=0]}
$$

X is received treatment

- Numerator is the intention to treat (ITT) estimate of the risk difference
- Denominator is estimate of the effect of the instrument on treatment on the risk difference scale

Modeling Issues

- IVs can also be motivated as a solution to systems of equations (allows one to include cov)
- A linear model for treatment (first-stage) that includes IV and covariates
- A linear model for the outcome that includes exposure and covariates
- System is solved by two-stage least-squares
- Many other variations
- IV probit (implemented in Stata), probit models for both first and second stages

Weak Instruments

- Consistent: Wald estimator / 2SLS converges to true parameter but still biased in finite samples
- When instruments are weakly related to
treatment (as quantified using a first-stage F statistic).
- Residual bias in IV due to violations of assumptions is amplified
- Variance in increased
- 2SLS estimates biased toward OLS, even if IV is perfect
- 2SLS confidence intervals are too narrow, particularly with many instruments and/or a first-stage F under 10.
- Alternative estimation procedure (LIML: limited information maximum likelihood) is preferable.

See Staiger \& Stock (1997)

Heterogeneous Treatment Effects

- Additional assumption required to justify IV estimator
- One example: 'Monotonicity’
(Angrist, Imbens, and Rubin, JASA 1996)
- In RCT example: 4 latent causal classes: always
takers, never-takers, defiers, compliers
- Monotonicity -> no defiers
- If you took treatment in the placebo arm, you would receive treatment in active arm
- IV estimates the average effect of treatment in the compliers ('marginal' patients)

Original Article
Evaluating Short-Term Drug Effects Using a Physician-
Specific Prescribing Preference as an Instrumental Variable
m. Alan Brookhart, Philip s. Wang, Daniel H. Solomon, and Sebastian Schneeweiss
- Goal: Use instrumental variable methods to
estimate short-term risk of GI outcomes between
- COX-2 selective NSAIDs versus
- Non-selective NSAIDs
Confounding: Coxibs are likely to be selectively
prescribed to patients at increased GI risk

| Characteristics of Cohort | |
| :--- | :---: | :---: |
| \qquadVariable Coxib NS NSAID
 Female Gender 86% 81%
 Age > 75 75% 65%
 Charlson Score>1 76% 71%
 History of Hospitalization 31% 26%
 History of Warfarin Use 13% 7%
 History of Peptic Ulcer Disease 4% 2%
 History of GI Bleeding 2% 1%
 Concomitant GI drug use 5% 4%
 History GI drug use 27% 20%
 History of Rheumatoid Arthritis 5% 3%
 History of Osteoarthritis 49% 33% | |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unmeasured Variables

- Do not have data on
- Lifestyle variables (e.g., diet, exercise, tobacco use)
- Cognitive status
- Physical functioning
- Clinical variables (e.g., blood pressure, BMI)
- Lab results (e.g., cholesterol levels)
- Education level

Conventional Statistical Approach

- Parameter of interest is the risk difference

Risk of GI bleed if given COX-2 - Risk of GI bleed if given a NS NSAID

- Conventional linear regression
- Crude RD
- Multivariable adjusted RD

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Possible Explanations?

- Coxibs are not GI protective in this elderly population
- High non-adherence
- NS NSAIDs are co-prescribed with GI protective drugs
- Unmeasured confounding

Unmeasured Indications for COX-2 Treatment

- These are selectively prescribed to
\qquad patients at risk of Gl complications
- Many GI risk factors are unmeasured in health care claims data files \qquad
- Tobacco use
- BMI / Obesity
- Alcohol consumption
- Aspirin use
- Complaints to MD about stomach problems

What can we do?
- Sensitivity analysis
- Requires assumptions about distributions of
unknown confounders
- External adjustment, two-stage designs, multiple
imputation, propensity score calibration
- Find an instrument!

\qquad
\qquad

- Requires assumptions about distributions of unknown confounders \qquad
External adjustment, two-stage designs, multiple imputation, propensity score calibration \qquad
\qquad
\qquad
\qquad

Physician as IV

- Coxib prescribing is driven strongly by MD preference (Solomon DH, et. al. 2003)
- Implication: Some patients would be treated with coxibs by some physicians and with non-selective NSAIDs by others
- Differences in coxib prescribing patterns is \qquad the natural experiment that we exploit

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Re-Analysis of NSAID Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Association between risk factors and treatment received		
Variable Coxib Users X=1 NS NSAID Users X=0 Female Gender 86% 81% Age > 75 75% 65% Charlson Score>1 76% 71% History of Hospitalization 31% 26% History of Warfarin Use 13% 7% History of Peptic Ulcer Disease 4% 2% History of GI Bleeding 2% 1% Concomitant GI drug use 5% 4% History GI drug use 27% 20% History of Rheumatoid Arthritis 5% 3% History of Osteoarthritis 49% 33%		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Instrument should be unrelated to observed patient risk factors

Variable	Coxib Preference Z=1	NS NSAID Pref Z=0
Female Gender	84%	84%
Age > 75	73%	72%
Charlson Score > 1	75%	73%
History of Hospitalization	29%	27%
History of Warfarin Use	12%	10%
History of Peptic Ulcer Disease	3%	3%
History of GI Bleeding	1%	1%
Concomitant GI drug use	5%	5%
History GI drug use (e.g., PPIs)	25%	24%
History of Rheumatoid Arthritis	4%	4%
History of Osteoarthritis	45%	41%

\qquad

Instrument should be related to treatment		
$\begin{aligned} & \text { Last } \\ & \text { NSAID } \end{aligned}$	Current Prescription (Actual Treatment)	
Prescription (IV)	$\begin{gathered} \text { Coxib } \\ \text { K=1 } \end{gathered}$	Non-Selective NSAID $x=0$ (0)
$\underset{\substack{\text { Coxib } \\ z=1}}{ }$	(73\%)	(27\%)
$\underset{\substack{\text { Non-Selective NSAID } \\ Z=0}}{ }$	(50\%)	(50\%)

IV estimate of the effect of coxib exposure on GI outcome

$E[Y \mid Z=1]-E[Y \mid Z=0]$	-0.21\%
$E[X \mid Z=1]-E[X \mid Z=0]$	22.8\%

- Numerator is the intention to treat (ITT) estimate of the risk difference
- Denominator is estimate of the effect of the instrument on treatment on the risk difference scale
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Conventional Unadjusted	Conventional Adjusted	Instrumental Variable Unadjusted	Instrumental Variable Adjusted
	Estimated	Estimated	Estimated	Estimated
	$R D \times 100$			
$\left(95 \% \mathrm{Cl}^{+}\right)$	$\left(95 \% \mathrm{Cl}^{+}\right)$	$\left(95 \% \mathrm{Cl}^{+}\right)$	$\left(95 \% \mathrm{Cl}^{+}\right)$	
GI Event within 60 days	0.03	-0.04	-0.92^{*}	-1.02^{*}
	$(-0.12,0.18)$	$(-0.20,0.10)$	$(-1.74,-0.10)$	$(-1.88,-0.16)$

We report the risk difference $\times 100 \quad$ * Significant at $\alpha=0.05$
\qquad
\qquad
\qquad

Comparison to RCT Results			
	Risk Difference per 100 patients $955 \% \mathrm{Cl})$		
	60 days	120 days	180 days
$\begin{aligned} & \text { IVEstimate } \\ & \text { (All Patients) } \end{aligned}$	${ }_{(-1.744-0.0 .10)}^{-0.9)^{*}}$	$\left(-2.20-\frac{-1.0 .09}{-5^{*}}\right)$	${ }_{(-2.14,0.25)}^{-0.94}$
VIGOR trial (Patients with RA)	$\begin{gathered} -0.47 \\ (-0.83,-0.12) \end{gathered}$	${ }_{(-1.08,-0.022)}^{-0.65^{*}}$	$\begin{gathered} \left.-1.070^{-1.57} \cdot 0.57\right) \end{gathered}$
CLASS trial (Patients with OA or RA)	Not Reported	Not Reported	$\begin{gathered} -0.96^{*} \\ (-1.74,-0.18) \end{gathered}$

Limitation:
 Violations of Exclusion Restriction

- IV should affect outcome only through its association with treatment
- IV weakly associated age, Charlson score, history of arthritis, hospitalizations
-> Differences in patient case-mix
- IV weakly associated with past use of warfarin
-> Differences in medical practice or case-mix
Physicians who use coxibs see sicker patients, use medications that increase Gl risk

Limitation:

Heterogeneous Treatment Effects

- When treatment effects are heterogeneous, IV estimator may be biased for ATE
- Under 'monotonicity' IV estimates average treatment effect in 'marginal' patients

Monotonicity Assumption

- In a randomized trial, coin flip encourages patients to take drug A or drug B
- Monotonicity states that there are no patients who would always do the opposite of what they were encouraged to do
- Monotonicity will not strictly hold in our setting
\qquad

The International Journal of Biostatistics		
Votume 3 , Isve 1	2007	
Preference-Based Instrumental Variable		
Methods for the Estimation of Treatment		
Effects: Assessing Validity and Interpreting		
Results		
M. Alan Bro		eweiss ${ }^{\text {f }}$

- If monotonicity doesn't hold, what is IV estimating in the presence of treatment effect heterogeneity?
- Weighted average of treatment effects, where the weight in a sub-group depends on the strength of the IV in the subgroup
- Can use subject matter knowledge to interpret...

Treatment effect heterogeneity:

 overuse of medications- Coxibs are thought to be over-used, given to many patients who may not benefit from added GI protection
- High risk patients treated by most physicians
- IV is affecting treatment more in low risk patients
->IV estimate over-weights effect of treatment in low risk patients
- If low risk patients less likely to benefit, IV underestimates benefit of treatment at population-leve (ATE)

Treatment effect heterogeneity underuse of medications

- Statins are widely thought to be underused, not given to many patients who might benefit
- Low risk patients not being treated by most physicians
- IV is affecting treatment more in high risk patients
->IV estimate over-weights effect of treatment in high risk patients
\qquad
- If high risk patients more likely to benefit, IV overestimates benefit of treatment at population-level (ATE)

Treatment effect heterogeneity: misuse of medications (Contraindications)

- Physicians who infrequently use a medication may be more likely to misuse it
- Patients are at greater risk of adverse event if they see a physician who does not use medication
- Preference-based IV methods could make a drug appear to prevent a side effect that it causes

Exploring Possible Bias Due To Treatment Effect Heterogeneity

- Can look for evidence of possible treatment effect heterogeneity
- Does strength of the IV vary across sub-groups?
- Coxib study overall strength of IV was 24%
- In patients with a history of GI bleed, IV strength was 19\%
- IV likely slightly underestimating average treatment effect (ATE)

Other examples of preference-based instrument

- Explicit clinician preference (Korn, Stat. Sci.)
- Clinic, hospital as IV (Johnston, J Clin Epi)
- Geographic region as instrument (Wen, J Clin Epi, Brooks et al, HSR, Stuckel T, et. al JAMA)
-> All attempt to estimate treatment effects by using difference in practice patterns as a quasiexperiment

\qquad

Comamate	comen	momen	
Nome	cosk	cosm	
	（en		，
	come		
		（ention	¢
边	（10xumix		${ }_{\text {咱 }}^{18}$
	city		磞
崖	（exisisis		\％
	cisix	（exition	，
边		cose	
	，		${ }_{\text {as }}$
	comem	成	${ }^{21}$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Table 5. Crude and Adjusted Association Between Influenza Vaccination and the Composite Outcome of P\&: Hospitalization or All-Cause Mortality Using Different Risk-Adjustment Methods				
Influenza Season	P\&/ Hospitalization or Death During Infuemza Seasons		P\&I Hospitalization or Death During Post-Influenza Seasons	
	Crute OR (95\% ¢ Cl)	Adjusted OR (95\%\% Cl$)^{1}$	Crude OR(95\%\% Cl)	Afusised OR (95\% CII) ${ }^{\text {d }}$
2000-2001	0.85 (083-1.88)	${ }_{\text {Lopositic Repression M Modeling }}$		
$2001-2002$	$0.887(0.840 .80)$	${ }^{0.780} 0$	${ }_{0}^{0.884(0.91-0.96-102)}$	${ }^{0.808(0.83-0.89)}$
$2002-2033$	0.72 (070-0.75)	0.67 (0.6550.70)	0.98 (0.95-101)	$0.887(0.84-9.90)$
2003-2024	0.67 (065-0.69)	$0.610 .606-0.63)$	0.96 (0.033-099)	0.87 (0.84-0.90)
$2004-205$	0.83 (088-0.85)	0.75 (0.73-.77)	${ }^{1.000(0.96-103)}$	$0.900(0.87-.095)$
$2005-2006$	0.91 (088-0.93)	$0800(0.77-.82)$	$0.977(0.94-100)$	0.86 (083-0.89)
2006-2007	0.81 (079-9.83)	0.72 (0.70-0.74)	1.02(0.09-1.05)	$0.900(0.87-.093)$
$2007-2008$	0.83 (081-0.85)	0.72 (0.71-.74)	$0.99(0.096-102)$	0.87 (0.84-0.90)
20002009	0.87 (0885-9.90)	0.77 (0.750.000)	1.04 (1.00-1.07)	0.922 (0.990.0.95)
Poobed	0.82 (077-.877)	0.74 (0.70-0.78)	0.97 (0.94-1.00)	$0.888(0.87-.900)$
2000-201	0.78 (069-0.89)	$\begin{gathered} \text { IV Analysis } \\ 0.83(0.71-0.96) \end{gathered}$	0.78 (0.69-0.88)	0.88 (0.76-1.02)
$2001-2002$	0.72 (0.65-0.80)	0.75 (0.66-0.085)	0.84 (0.74-9.95)	1.03 (0.89-1.19)
$2002-2033$	0.883 (073-.094)	0.97 (0.822-1.13)	0.88 (0.78-099)	$1.111(0.06-1.29)$
2003-2004	0.64 (057-0.71)	0.75 (0.650.0.85)	0.77 (0.69-0.87)	1.05 (0.91-1.21)
$2004-2035$	0.766 (070-0.83)	0.98 (0.88-1.10)	0.74 (0.66-082)	1.02 (0.89-1.18)
${ }^{200055-2006}$	${ }^{0.677(0.051-.74)} 0$	-074(0.65-.0.03)	$0.76(0.69-9.85)$ 0.73 (0.65-082)	+1.04(0.09-1.19)
${ }_{2000-2008}^{20007}$	0.76 (0.70-0.83)	0.90 (0.81-1.00)	${ }_{0} .73$ (0.65-081)	$0.99(0.87-1.14)$
2008-2099	0.75 (0.68-0.82)	0.900 (0.81-1.07)	0.76 (0.68-084)	$1.022(0.90-1.17)$
Poobd	0.74 (0.70-0.77)	0.86 (0.720.02)	0.77 (0.73-0.81)	1.02 (0.071.06)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

nvitid commetary
The Influenza Vaccine in Elderly Persons A Shot in the Dark? M. Alan Brookhart, PhD Leah McGrath, MS - Results compatible with recent studies - Should have used pre-flu season as a negative control - Differences between regions in vaccine assessment might have biased results to null

Distance to Specialized Care As An Instrumental Variable

McClellan, M., B. McNeil and J. Newhouse, JAMA, 1994.
"Does More Intensive Treatment of Acute Myocardial Infarction Reduce Mortality?"

- Medicare claims data identify admissions for AMI, 1987-91
- Treatment: Cardiac catheterization (marker for aggressive care)
- Outcome: Survival to 1 day, 30 days, 90 days, etc.
- Instrument: Indicator of whether the hospital nearest to a patient's residence does catheterizations.

Are assumptions valid?

1. Is IV associated with treatment?
26.2% get cath if nearest hospital does caths 19.5% get cath if nearest hospital does not do caths
2. Is IV associated with outcome other than through it effect on treatment?

Can't be determined-but IV is unassociated with observed patient characteristics.

McClellan, et al. results

1. Conventional methods

- 1-year mortality is 30% lower (17% vs. 47%) if catheterized
- OLS estimate is -24%, adjusting for observable risk factors

2. IV estimator suggest catheterization associated with 10 percentage point reduction in mortality

$$
\begin{aligned}
& \frac{\mathrm{E}[\mathrm{Y} \mid \mathrm{Z}=1]--\mathrm{E}[\mathrm{Y} \mid \mathrm{Z}=0]}{-----------------------10.4 \%} \\
& E[X \mid Z=1]-E[X \mid Z=0] \quad 6.7 \%
\end{aligned}
$$

IVs can also be created

- 'Randomized encouragement' designs
- Randomized 'academic detailing' programs (Avorn and Soumerai)
- Designed delays (McClure M., Dormuth C; work in British Columbia)

Mendelian Randomization

(Davey-Smith)

- Using genes as instruments for phenotypes or environmental exposures
- Mendel's Law of Independent Assortment: during gamete formation, segregation of alleles from one allelic pair is independent of the segregation of the alleles of another allelic pair

The effect of alcohol on HDL and hypertension

 Davey-Smith and Ebrahim, BMJ 2005- Studies of the effect of alcohol consumption are difficult
- Alcohol related to many lifestyle characteristics exposures that are hard to measure
- Enzyme aldehdye dehydrogenase (AD) responsible for alcohol metabolism
- 50% of Japanese are homozygous or heterozygous for a non-functional variant of the AD gene

Association between genotype and various characteristics

	Homozygous	个Heterozygous	Functional Variant
Mean Alcohol Consumption (ml/day)	5.3	15.1	29.2
Mean Age	61.3	61.5	60.6
\% Smokers	48.5	47.9	47.7
Mean HDL ($\mathrm{mmmol} / \mathrm{l}$)	1.24	1.35	1.4
\% with Hypertension	40.6	37.7	46.9

Mendelian Randomization

 Discussion- Does this genotype seem like a valid instrument for the effect of alcohol?

Influenza Vaccine Effectiveness
in Patients on Hemodialysis
An Analysis of a Natural Experiment
Leah J. McGrath, MHS; Abhijit V V Kshirsagar, MD, MPH; Stephen R Cole, PhD; Lily Wang, PhD;
David]. Weber, MD, MPh; Til Sturmer, MD, MPH; M. Alan Brookhart, PhD

- Controversy about effectiveness of vaccine in the elderly and patients with ESRD
- Receipt of vaccine appears to be a marker of good health
- Reports finding 50% reduced risk of mortality in vaccinated patients
- Year-to-year variation in vaccine match represent a natural experiment that we can exploit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Antigenic Distance - Vaccine Match
Table 2. Description of flu seasons

$\%$ Match	1997	1998	1999	2001	2003
Predominate strain	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2), \mathrm{B}$	$9 \mathrm{~A}(\mathrm{H} 3 \mathrm{~N} 2)$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2), \mathrm{B}$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$
Start of flu season	$1 / 24 / 1998$	$1 / 16 / 1999$	$12 / 18 / 1999$	$1 / 12 / 2002$	$10 / 25 / 2003$
End of flu season	$2 / 21 / 1998$	$4 / 10 / 1999$	$3 / 25 / 2000$	$4 / 27 / 2002$	$1 / 17 / 2004$

Sketch of Design and Analysis

\qquad

- Identified all hemodialysis patients prevalent on Sept. $1^{\text {st }} 1997$ and 1998
- Standard Analysis:
- Vaccination status is a time-varying covariate
- Alternative analysis
- Compared vaccinated in 1997 to vaccinated in 1998
- Follow-up started on date vaccine was administered
Table 2. Description of flu seasons

	1997	1998	1999	2001	2003
$\%$ Match	14%	90%	97%	100%	11%
Predominate strain	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2), \mathrm{B}$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2), \mathrm{B}$	$\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$
Start of flu season	$1 / 24 / 1998$	$1 / 16 / 1999$	$12 / 18 / 1999$	$1 / 12 / 2002$	$10 / 25 / 2003$
End of flu season	$2 / 21 / 1998$	$4 / 10 / 1999$	$3 / 25 / 2000$	$4 / 27 / 2002$	$1 / 17 / 2004$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Analysis: Cox Proportional Hazards Model						
		chatios			(4sx $)^{1}$)	
ver	coid		cmas	mimes		Pratibuturume
		$\underset{\substack{2097 \\ 3055}}{\text { and }}$	(osiman	(0xicaras)	cose	
comid	${ }^{2385}$	${ }^{314}$	-rparama	aromesers)	astocases)	огтой
	${ }_{\text {a }}^{\text {2se }}$			(0atemen	cirlo	
	\%xise	3150		0r2apos	Cstore	огярия
			(oq(exse	Oex (asasy	cispean	\%ex
	${ }^{2904}$	${ }^{350}$	Crsar	oro	Caspas	020808
\%ill			(expex	atemex	cose	\%expunity
noent	${ }_{3221}$	$3{ }^{34}$		0ro (0asery)	c.504040909)	0.0.09720.4)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

- Pharmacoepidemiology
- Very large data sets
- Limited ascertainment of confounders
- IV methods may be often indicated
- Key is finding good instruments!
- Care must be taken with
- Study design
- Evaluating assumptions
- Interpreting/generalizing results

Discussion / Questions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Readings On Instrumental Variable Methods

\qquad

Recommended Reading

Brookhart MA, Rassen JA, Schneeweiss S. Instrumental variable methods in
comparative safety and effectiveness research. Pharmacoepidemiol Drug Saf. 2010
Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. Journal of the American Statistical Association. 1996;81:444-455.
Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short-term drug
effects using a physician-specific prescribing preference as an instrumental varia
effects using a physician-specific prescribing preference as an instrumental variable
Epidemiology. May 2006;17(3):268-275. Epidemiology. May 2006;17(3):268-275
McClellan M, McNeil BJ, Newhouse JP. Does more intensive treatment of acute
myocarda infarction in the elderly reduce mortality? Analysis using instrumental
variables. Jama. Sep 21 1994;272(11):859-866
Brookhart MA, Schneeweiss S. Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results.
GD Ebaim S. What mialistics. 2007;3(1).
Smith GD, Ebrahim S. What can mendelian randomisation tell us about modifiable behavioral and environmental exposures? BMJ 2005

\qquad
\qquad

\qquad
\qquad
\qquad

Stata Code
Unadjusted Model (no covariates)
ivreg y ($\mathrm{x}=\mathrm{z}$), first
Adjusted Model (with covariates)
xi: ivreg y bleeding ulcer i.year i.gender ost_arthrit ($\mathrm{x}=\mathrm{z}$), first

Stata Code
Robust standard errors for IV estimator to account for within-physician clustering ivreg $y(x=z)$, first cluster(doctor) IV Probit Model ivprobit $y(x=z), ~ f i r s t ~$

\qquad

Learning Objectives

- To understand how to measure and model medication adherence using pharmacy claims data
- To understand some challenges and potential approach to estimating the effects of adherence on outcomes

Everyone benefits from good adherence

\qquad

- Stakeholders
- Pharmaceutical companies
\qquad
- Physicians
- Pharmacies
- Patients

Overview of Lecture

- Introduction
- Measuring adherence
- Example: Adherence with Osteoporosis Medications
- Dynamic patterns of adherence
- Example: Statins in British Columbia
- The healthy user/adherer effect
- Adherence and comparative safety/effectiveness research

The Consequences of Nonadherence

- 125,000 deaths per year in U.S. ${ }^{1}$
- All medication-related hospital admissions in the United States, 33 to 69 percent are due to poor medication adherence. ${ }^{4}$
- Total cost estimates range from $\$ 100$ billion 2 to $\$ 300$ billion. ${ }^{3}$

1) Cited by Haynes RB. Compliance in Healthcare, 1979; Blackwell B. N EngI J Jed, 1973.
${ }_{2}$ Cited by Munger Liu Wertheimer, Whitcup Berg

Cited by Munger, Lu,

Why we need to study adherence

\qquad

- To evaluate the magnitude of the problem
- To understand adherence
- To target interventions
- To help inform/interpret observational safety and effectiveness research of drugs

What do we know / do not know

- Many papers on
- How low adherence is
- Patient groups at risk of becoming nonadherent (people of
lower education, socioeconomic status, depressed patients)
- Weak predictors of non-adherence (medication regimen
complexity, cost)
- Consequences of nonadherence (somewhat questionable validity)
- Very little is known about
- Why patients stop specific treatments
- How to predict nonadherence at the patient level
- What interventions will cause meaningful improvements
Fatent diaines Help to correct or poor recal Easily altered by the patient
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Typical Pharmacy Claims Data

\qquad

- Date filled
- Agent (NDC code) \& dose
- Days Supply
- Physician identifier
- Pharmacy identifier
- "Refill" indicator

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Medication Possession Ratio (MPR)

MPR is usually defined as the sum of the days' supply of medication divided by the number of days between the first fill and the last refill plus the days' supply of the last refill.

\qquad
\qquad
\qquad
\qquad

Arch Interm Med 2005; 165:2414-2419
Compliance With Osteoporosis Medications \qquad
Daniel H. Solomon, MD, MPH; Jerry Avorn, MD; Jeffrey N. Katz, MD, MSc; Joel S. Finkelstein, MD;

- Selected all new user of osteoporosis medications who were Medicare beneficiaries and eligible for PACE from January 1, 1996, through December 31, 2002.
- Osteoporosis medications were bisphosphonates, HRT, raloxifene, and calcitonin.
- Follow-up was broken into 60-day intervals, percentage of days covered by medication was computed for each interval (patients were dropped from the denominator at
\qquad
\qquad death/censoring)
- Discontinuation was defined 120 days with no medication available.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
for osteoporosis,
45.2% of the 40,002 patients were not continuing treatment

\qquad
\qquad
\qquad
\qquad
\qquad

Statistical Modeling of Adherence

- Modeled adherence in each 60-day interval via a repeated measures model
- PDC as a continuous variable
- Adherence as a dichotomous variables (PDC>66\%)
- One model with baseline variables, one \qquad with time-varying covariates

\qquad

OP adherence study: Results

- Persistence is poor
- Clinical need predicts adherence
- Poor adherence was associated with nonwhite race, old age
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad Medications: The Dynamics of Noncompliance
M. Alan Brookhart, PhD, Jerry Avorn, MD, Jeffrey N. Katz, MD, MS, Joel S. Finkelstein, MD, Marilyn Arnold, ScD

Division of Pharmacoeppidemiology and Phamacocconomics, Deparnnent of Medicine, Brigham and Women's Hospial/Harvard
The American Journal of Medicine (2007) 120, 251-256

Adherence as a Dynamic Process?

- The prevailing paradigm is that adherence is relatively static \qquad
- Many health-related behaviors are cyclical - Dieting \qquad - Exercise
- Is it useful to view adherence as a \qquad dynamic process?

ARCH INTERN MED/VOL 167, APR 23, 2007
Physician Follow-up and Provider Continuity Are \qquad Associated With Long-term Medication Adherence A Study of the Dynamics of Statin Use

\qquad

- A study of 239,911 new users of statins in British Columbia, of whom 129,167 (53.8\%) had a period of nonadherence that lasted for at least 90d. \qquad
\qquad
- How many of these patients restart statin therapy?
- Can we identify predictors of re-initiation?
Re-initiation Rate
- Of patients who stopped therapy for at least 90d, an estimated 38% restarted treatment within one year and 52\% restarted within two years.
- Statin use is dynamic

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Identifying Predictors of Re-initiation: a case crossover design

\qquad
\qquad
\qquad

- Events
- Cholesterol testing \qquad
- Any physician visit
- Visit with physician who started the patient on a statin \qquad
- CAD-related hospitalization

Statin Adherence Dynamics Study: Results

- Statin use is dynamic, once stopped does not mean always stopped
- "Fire-and-forget" approach to treatment not optimal
- Physician follow-up and provider continuity appear to be important components of adherence

Limitations

- Don't know why a patient stopped taking med
- Uncertainty about causal process
- Do patients see a physician because they need a refill?
- Physician urges patient to resume treatment

```
Adherence to Lipid-lowering Therapy and Ir Se Prevtive Health Services
An Investigation of the Healthy User Effect
M. Alan Brookhart', Amanda R. Patrick', Colin Dormuth',}\mp@subsup{}{}{2}\mathrm{ , Jery Avorn', William Shrank', Suzanne
American Journal of Epidemiology Advance Access published May 15, 2007
```

- Are patients who adhere to statins more likely to do other things that might affect outcomes?
- Sought to examine association between adherence and use of prevention-oriented health services
- Identified a cohort of new users of statins between 1996 and 2004 with no evidence of coronary heart disease (history of AMI, diabetes, angina, hypercholesterolemia)

\qquad
\qquad
\qquad
\qquad
\qquad

Healthy Adherer Results				
TABLE 2. Hazard ratios of receiving various screening tests and vaccinations, along vith two or more fills during the assessment period vs. a single statin fill, in a Pennsylvania cohort, 1996-2004*				
Outcome	$\begin{gathered} \text { Unadjustion } \\ \text { hazard ratio } \end{gathered}$	95% confidence interval	Mutivaratolo adiusted nazard adiot azard ratió	95% confidence interval
Women only				
Bone mineral density test	1.04	0.84, 1.27	1.08	0.88, 1.33
Screening mammogram	1.22	1.09, 1.38	1.22	1.09, 1.38
Men orly				
Prostate-specific antigen test	1.60	1.15, 2.24	1.57	1.17, 2.19
Bah sexes				
Fecal occull blood test	1.29	1.10, 1.50	1.31	1.12, 1.53
Influenza vaccination	1.18	1.09, 1.28	1.21	1.12, 1.31
Pneumonia vaccination	1.44	1.15, 1.80	1.46	1.17, 1.83
- Subjects were censored at the end of follow-up, loss of Pharmaceutical Assistance Contract for the Elderly (PACE) eligibility, death, and nursing home admission. \dagger The analysis is stratified on age and sex. Multivariable adjustments were made for all the other covariates given in table 1.				

Conclusion

- Patients who adhere to statins more likely to receive a range of prevention-oriented clinical service

Epidemiology

Statin Adherence and Risk of Accidents A Cautionary Tale
Colin R. Dormuth, SCD; Amanda R. Patrick, SM; William H. Shrank, MD James M Wright MD, PhD; Robert J. Glynn, PhD, SCD;
Jenny Suther Iand, ESC; M. Alan Erokhart, PhD
(Circulalion. 2009;19:2051-2057.)

- Research Question: Are patients who are adherent to statins at lower risk of outcomes unlikely to be affected by statin exposure but likely to be related to healthy lifestyle?
- Population: All new users of statins in British Columbia with no evidence of existing heart disease

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions
- Patients who adhere to statins more likely to
receive a range of prevention-oriented clinical
service at decreased risk of accidents and
adverse health outcomes

```
Medication nonadherence is associated with a broad
range of adverse outcomes in patients with
coronary artery disease
```



```
John S. Rumselel, MD, PhD",b,c, Denver and Aurora, CO
- 15,767 patient with CAD
- Adherence dichotomized: PDC>80\% in first 180 days
- Adherence associated with various outcomes during a 1-year follow-up period
```


\qquad
\qquad
\qquad

Effectiveness of Statin Therapy in Adults With \qquad Coronary Heart Disease
TimothyJ. Wilt, MD, MPH; Hama E Bloomfield, MD, MPH; Roderick MacDonald, MS; David Nelson, PhD;
Indulis Ruths, BS; Michael Ho, MD; Gregory Larsen, MD; Anthony McCall, MD, PhD; Sandra Pineros, MPH; Anme Sale, PhD \qquad

- Meta-analysis of 19 placebo-controlled statin trials in secondary prevention
- All cause mortality reduced by 16% (vs 85\%)
- CHD mortality and non-fatal MI by 25\% (vs 35\% CV hospitalization 62\% CV Death)

```
(REPRINTED) ARCH INTERN MED/VOL 16+, JULY 12, 2004 (427 WwW.ARCHINTERNMED.COM
```

\qquad
\qquad
\qquad
\qquad
\qquad

- Estimation of the benefits of adherence appears to be overstated
- What else can we do to estimate the effect of adherence?

Approaches to Control the Healthy User Bias: Better Adjustment

- Variables
- Healthy behaviors
- Unhealthy behaviors
- Education
- Use of other medications
- Cognitive and functional status
- Access to care
- These variables are not available in most pharmacoepidemiologic databases in US
- High-dimensional "proxy" adjustment

Approaches to the Healthy User Bias:

 Active Comparator Group- Compare adherent new initiators of statins to adherent new users of other preventive medications

What medications?
You want something that does not affect the outcome.

- What about an instrumental variable?

Drug Copayment and Adherence in Chronic Heart Failure: Effect on Cost and Outcomes
T. Alexander Cole, D.Sc., M.P..., Heather Norman, M.A., Lisa B. Weatherby, M.S., and

Alexander M. Walker, M.D., Dr.P.H.

- Hard to study effects of medication adherence
- Use copayment as an instrument for the effect of adherence of BB and ACEI in heart failure
- Does this seems like a reasonable IV?
- How would you interpret the results?

Table 2. Predicted Medication Possession Ratios and Predicted Costs and Risks of Hospitalization for Chronic Heart Failure According to Group and Copayment			
Group, Copayment (\$)	Predicted Medication Possession Ratio, 2002 (\%)	Predicted Medical Cost, 2003 (\$)	Predicted Frequency of Hospitalization, 2003 (\%)
ACE inhibitor			
5	94.5	7583	13.0
10	93.2	7554	13.3
15	91.9	7524	13.7
20	90.7	7495	14.0
25	89.4	7466	14.4
30	88.1	7437	14.7
β-Blocker			
5	94.3	8903	10.0
10	93.5	8779	10.4
15	92.6	8657	10.8
20	91.7	8536	11.2
25	90.8	8417	11.7
30	89.9	8300	12.1

\qquad

Rationale and design of the Post-MI fREEE trial:
A randomized evaluation of first-dollar drug coverage for post-myocardial infarction secondary preventive therapies

\qquad

Half of Aetna beneficiaries who experienced an AMI were randomized to receive free cardiovascular drugs
\qquad (\$0 copay)

- Other received usual benefit
- Hypothesis: Reducing copays will improve adherence and save money and lives

\qquad

Full Coverage for Preventive Medications after Myocardial Infarction

- 6,000 patients randomized
- Rates of adherence were slightly higher in the free drugs arm (6\%)
- Rates of primary outcome (first major vascular event) not reduced
- Rates of all vascular event were lower in free \qquad drugs arm HR=0.89
- Costs were not different between groups

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

thenew eng land journal ofmedicine
original article
Risk of Death in Elderly Users of Conventional vs. Atypical Antipsychotic Medications Philip S. Wang, M.D., Dr.P.H., Sebastian Schneeweiss, M.D., Jerry Avorn, M.D., Michael A. Fischer, M.D., Helen Mogun, M.S., Daniel H. Solomon, M.D., M.P.H., and M. Alan Brookhart, Ph.D.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ideally results from different approaches will agree

- APM Study comparing risk of death of new users atypicals to new users of conventionals
- Used various analytical approaches
- Used COX-PH regression adjusting covariates
- Sub-classification on the propensity scores
- Instrumental variables based on prescribing physician
- Established a dose-response relation within each APM group
- Restricted to different populations (with and without dementia diagnosis, current nursing home resident)
- Sensitivity analysis suggested there would have to be
tremendous unmeasured confounding to change our conclusion
- All results suggested that conventional APMs have a higher shortterm risk of death than atypical APMs

53

Research

Risk of death associated with the use of conventional versus atypical antipsychotic drugs among elderly patients
Sebastian Schneeweiss, Soko Setoguchi, Alan Brookhart, Colin Dormuth, Philip s. Wang

- AHRQ DEcIDE-funded study
- Same design, same analysis, done using claims data from the British Columbia Ministry of Health
- 37,241 elderly patients
- Same finding: 32% increased risk among new users of the conventional APM
- Similar finding reported in Ontario, CA (Gill, et al Ann of Int Med, 2007)

, menmen

Cuncal 4 Ressench news \qquad
FDA Extends Black-Box Warning to All Antipsychotics

Increased Mortality in Elderly Patients with Dementia-Related Psychosis - Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at
an increased risk of death. Analyses of seventeen placebo-controlled trials (moda
duration of 10 weeks), largely in patients taking atypical antipsychotic drugs,
revealed a risk of death in drug-treated patients of between 1.6 to 1.7 times the
risk of death in placebo-treated patients. Over the course of a typical 10-week
controlled trial, the rate of death in drug-treated patients was about 4.5%,
compared to a rate of about 2.6% in the placebo group. Although the causes of
death were varied, most of the deaths appeared to be either cardiovascular (e.g
heart failure, sudden death) or infectious (e.g., pneumonia) in nature.
treatment with conventional antipsychotic drugs may increase mortality. The
extent to which the findings of increased mortality in observational studies may
be attributed to the antipsychotic drug as opposed to some characteristic(s) of the patients is not clear.

In the absence of regulatory action, the final jury is the prescriber
"....More analysis of these drugs (antipsychotics) clearly needs to be done before any firm conclusions emerge. In the meantime, we should temper our bias that older treatments are de facto safer because they have been on the market longer. As the old saying goes, you don't know what you don't know."

If done well, non-experimental research can contribute useful information about comparative safety and effectiveness of therapeutics

- "... While many clinicians have shied away from using atypical antipsychotics, this study offers strong (although not convincing) evidence that conventional antipsychotics are even more dangerous. ...it is wise to limit the use of antipsychotics in general, and if they are used, atypicals are likely to be safer."
- -Ashish K. Jha, MD MPH
- Outcomes Research in Review ${ }_{6} 1$

