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Outline

Variable Selection for Decision-Making in Individualised
Treatments

What is Personalised Medicine?
Optimal Decision Rules
Test-Based Selection of Variables for Decision-Making
Application to Clinical Trial
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Personalised Medicine

*Image adapted from the DNA Research Center
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Personalised Medicine

Same treatment is not always best for all patients.

Which treatment should be assigned to which patient?

Depends on the patient’s characteristics:

Age.
Sex.
Medical history.
Genetic information.
. . .

Collecting and storing all information can complicate decision
process and add cost.

Goal: Identify characteristics important for treatment
decisions.
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Motivating Example

AIDS Clinical Trials Group (ACTG) 175:

Randomized, double-blind, placebo-controlled trial to compare
efficacy among treatments in HIV-infected patients.

ACTG175 dataset contains 16 baseline covariates on 1,100
patients including: age, sex, previous treatment history, etc.

Mean (standard error) of treatment effect at 96 weeks

Treatment CD4 Cell Count Ratio to Baseline
Zidovudine (AZT) 0.798 (0.025)

AZT + Didanosine (ddl) 1.009 (0.028)
AZT + Zalcitabine (ddC) 1.000 (0.025)

Overall, combination of AZT + ddl is best (not significantly).
But can we identify subgroups of patients who would benefit
from the other combination, AZT + ddC?
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Variable Selection for Treatment Decisions

Typical variable selection considers variables that affect the
response, i.e. those that help predict higher/lower CD4 count.

Here, we seek variables to help determine treatment to employ.
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Formal Objective

Optimal treatment for a patient: treatment allocation which
maximizes expected response.

Decision rule will be a function of the variables XXX .

Want decision rule to yield optimal treatment for each patient.

Goal: Find smallest subset of variables, XXX S , that results in
rule that matches optimal treatment allocation.

These are only variables relevant to decision-making.
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Simple Example

Decision rule here is simple:

If X3 > 0.5 then give Treatment 1. Otherwise Treatment 0.

In general, it would be more complex.
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Common Approaches

1 Variable selection as usual:
Regularisation, Cross-Validation, AIC/BIC.

Targets on prediction error, not decision-making subset.

2 Include interactions between treatment and each variable.

Perform variable selection only on interaction terms.
Better, but still targets prediction error.
Variable may interact with treatment, but not be qualitative
interaction.

3 Univariate scores based on magnitudes and locations of
crossing in interaction plots.

Rank variables based on individual scores.
Decide on where to make cutoff.
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Proposed Approach: “No Regret”

Assume we know the true model and parameters.

Let a?(XXX ) denote optimal treatment rule.

Then a?(XXX ) = 1 if E [Y |XXX ,A = 1] > E [Y |XXX ,A = 0].

Note: a?(XXX ) is a function of true parameters.
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Proposed Approach: “No Regret”

Consider “Regret” from using subset XXX S instead of full
optimal.

Idea: For every patient, compare response obtained using
policy based only on XXX S to optimal response.

Formally define parameter, RS :

RS = EXXX {E [Y |XXX ,A = a?(XXX )]− E [Y |XXX ,A = a∗S(XXX S)]} ,

a?(XXX ) is optimal treatment rule.
a∗S(XXX S) is best available treatment rule using only subset XXX S .

Goal: No Regret!

Formal hypothesis test on univariate parameter, H0 : RS = 0.
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Simple Example of Regret

Here, decision based on full model is

If X3 > 0.5 then give Treatment 1. Otherwise Treatment 0.

Consider subset with X1 and X2 only.

Then decision rule is: ALWAYS give treatment 1.
Apply this rule.
Regret is (weighted) difference between curves!

If we throw out X1 and X2 and just keep X3, NO REGRET.
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Procedure

To conduct hypothesis test, H0 : RS = 0, need model.

To allow for flexible model, use nonparametric regression for
response given each treatment condition.

Any is suitable, choose your favourite!
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Procedure

Can now test any pair of nested subsets.

RS = 0 denotes that reduced subset is sufficient for
decision-making.

How to test H0 : RS = 0?

Univariate parameter, RS , is function of parameters for full
and reduced models.

Can estimate by R̂S via plugging in parameter estimates.

Using (asymptotic) joint distribution of estimated parameters,

transform to obtain distribution of R̂S .
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Backward Elimination Procedure

Application: Imbed testing in backward elimination.

Step 1: Estimate parameters in model.

Step 2: For each patient, now have predicted response under
each treatment. So have estimated treatment rule.

Step 3: Remove one predictor to get reduced subset, XXX S , and
redo estimation under reduced model.

Step 4: Using the two decision rules, can directly compute
plug-in estimate of Regret.

Step 5: Repeat for all predictors, and choose the resulting
subset with smallest Regret.

Step 6: Repeat treating current model as full model.

Continue until desired stopping criterion met.
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ACTG175 Analysis

Two treatments for comparison:
1 AZT + ddl (Best on average across all patients).
2 AZT + ddC.

Using 16 candidate predictors in Backward Elimination
removes 10 and keeps 6.

Next one has (Bonferroni corrected) p-value around 0.20.

Variables selected as important for decision making. Values in table represent p-values from using full model of size
6, and seeking to reduce to model of size 5.

Covariate Estimated Regret p-value Corrected p-value

number of days of previous antiretroviral therapy 0.01659 0.0029 0.0174
symptomatic indicator 0.02172 0.0004 0.0020
CD4 T cell count at baseline 0.03062 ≤ 0.0001 ≤ 0.0001
race 0.03787 ≤ 0.0001 ≤ 0.0001
indicator of prior AZT use 0.07317 ≤ 0.0001 ≤ 0.0001
age 0.07393 ≤ 0.0001 ≤ 0.0001
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Marginal Covariates-Treatment Interaction

Marginal Covariates-Treatment Interaction Plot

Treatment response surfaces are predicted based on regression for each
treatment, and marginal interaction plots are generated via Monte Carlo
integration over the other covariates.

Looks like no importance of Age or AZT Usage for
decision-making?

University of Melbourne Professor Howard Bondell 17
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Conditional Covariates-Treatment Interaction

Conditional Covariates-Treatment Interaction Plot

Interaction of Age and Treatment stratified by AZT Usage, along with age
distribution in each group.

Looks like a subgroup may benefit from alternate treatment!
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Conditional Covariates-Treatment Interaction

Conditional Covariates-Treatment Interaction Plot

Interaction of Age and Treatment stratified by AZT Usage, along with age
distribution in each group.

Looks like a subgroup may benefit from alternate treatment!

University of Melbourne Professor Howard Bondell 18



Treatment Policy Value

Cross-validation to evaluate the treatment policy.

Value is estimated by computing mean response on holdout
data for those observations consistent with the treatment
policy found by each method.

Averaged over 100 splits of data (with standard deviation).

Value increase compared to AZT + ddC

Treatment Policy Percent Patients Treated with AZT+ddl Value Increase
All treated with AZT+ddl 100% 9.4 (3.1)

Policy from SA 51.1% 9.5 (5.3)
Policy from NP 50.4% 19.1 (4.5)

SA: sequential advantage (Fan et al., 2016). NP: Nonparametric regression variable selection procedure.
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Implementation of Treatment Assignments

How would medical professional use these results?

Input patient values, have computer run procedure and spit
out predicted best treatment.

May not appreciate “Black Box”.

Instead, take results from this estimated policy and provide
friendly interface.

Now have binary response data, i.e. predicted best treatment
for each patient in data.
Construct decision tree from this new dataset.
Provide this visual representation of treatment rule.

University of Melbourne Professor Howard Bondell 20
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Treatment Policy Tree

Decision tree approximation to the optimal treatment policy.
Z: AZT+ddC. D: AZT+ddl.
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Further Issues

Two (related) questions you may ask:
1 What happens with a large number of predictors?

Backward elimination may not be well-suited.
2 Why backward elimination, not forward selection?

First is straightforward.

Use screening method to reduce number of predictors.
Here, screen predictors in each treatment group separately.
Only variables deemed to have non-zero effect in at least one
group are kept.

Second, a bit more subtle.
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Why Backward Elimination?

For forward selection, we consider addition of each possible
variable, one-at-a-time.

Need to fit model for each candidate subset obtained by
adding one predictor.
Need to do this at every step.
Depending on method, fitting can be expensive, although can
be done in parallel.

For backward elimination, same issue.

So what’s the difference?
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Why Backward Elimination?

Can use approximation to backward elimination.

Start with full fit.
Using joint Gaussian distribution of estimated parameters, can
approximate results for any subset.

Removing Xj from model is equivalent to setting some
parameter(s) to zero.

Obtain distribution for any subset by conditioning on the
appropriate set of parameters being zero.
Once again, multivariate Gaussian with known conditional
distribution.

No need to refit at all!
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Optimal Treatment Decisions in Personalized Medicine

Benefits:

Selection of quantitative interactions represents variables
relevant for decision-making.

Approach directly targets difference from optimal decision.

Can apply to multiple treatments, not just two.

Additional work:

Adapt to dynamic treatments, i.e. multiple decision points.

Which variables?
Which time point?
What is the trigger to make a switch?
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