Variable Selection for Decision-Making in Individualised Treatments

Professor Howard Bondell

School of Mathematics and Statistics University of Melbourne howard.bondell@unimelb.edu.au

28 May 2020

- Variable Selection for Decision-Making in Individualised Treatments
 - What is Personalised Medicine?
 - Optimal Decision Rules
 - Test-Based Selection of Variables for Decision-Making
 - Application to Clinical Trial

э

・ロト ・四ト ・ヨト ・ヨト

Personalised Medicine

*Image adapted from the DNA Research Center

Э

- Same treatment is not always best for all patients.
- Which treatment should be assigned to which patient?

Personalised Medicine

- Same treatment is not always best for all patients.
- Which treatment should be assigned to which patient?
 - Depends on the patient's characteristics:
 - Age.
 - Sex.
 - Medical history.
 - Genetic information.
 - . . .

э

・ロト ・四ト ・ヨト ・ヨト

Personalised Medicine

- Same treatment is not always best for all patients.
- Which treatment should be assigned to which patient?
 - Depends on the patient's characteristics:
 - Age.
 - Sex.
 - Medical history.
 - Genetic information.
 - . . .
 - Collecting and storing all information can complicate decision process and add cost.
- **Goal:** Identify characteristics important for treatment decisions.

• AIDS Clinical Trials Group (ACTG) 175:

Randomized, double-blind, placebo-controlled trial to compare efficacy among treatments in HIV-infected patients.

• ACTG175 dataset contains 16 baseline covariates on 1,100 patients including: age, sex, previous treatment history, etc.

- 4 周 ト 4 日 ト 4 日 ト

• AIDS Clinical Trials Group (ACTG) 175:

Randomized, double-blind, placebo-controlled trial to compare efficacy among treatments in HIV-infected patients.

• ACTG175 dataset contains 16 baseline covariates on 1,100 patients including: age, sex, previous treatment history, etc.

Treatment	CD4 Cell Count Ratio to Baseline
Zidovudine (AZT)	0.798 (0.025)
AZT + Didanosine (ddl)	1.009 (0.028)
AZT + Zalcitabine (ddC)	1.000 (0.025)

Mean (standard error) of treatment effect at 96 weeks

 Overall, combination of AZT + ddl is best (not significantly). But can we identify subgroups of patients who would benefit from the other combination, AZT + ddC?

・ロト ・回ト ・ヨト・

Variable Selection for Treatment Decisions

- Typical variable selection considers variables that affect the response, i.e. those that help predict higher/lower CD4 count.
- Here, we seek variables to help determine treatment to employ.

Variable Selection for Treatment Decisions

- Typical variable selection considers variables that affect the response, i.e. those that help predict higher/lower CD4 count.
- Here, we seek variables to help determine treatment to employ.

(日)

-

- Optimal treatment for a patient: treatment allocation which maximizes expected response.
- Decision rule will be a function of the variables **X**.
- Want decision rule to yield optimal treatment for each patient.

- Optimal treatment for a patient: treatment allocation which maximizes expected response.
- Decision rule will be a function of the variables **X**.
- Want decision rule to yield optimal treatment for each patient.
- **Goal:** Find smallest subset of variables, X_S , that results in rule that matches optimal treatment allocation.
 - These are only variables relevant to decision-making.

Simple Example

• Decision rule here is simple:

• If $X_3 > 0.5$ then give Treatment 1. Otherwise Treatment 0.

Э

・ロト ・四ト ・ヨト ・ヨト

Simple Example

• Decision rule here is simple:

• If $X_3 > 0.5$ then give Treatment 1. Otherwise Treatment 0.

• In general, it would be more complex.

э

・ロト ・四ト ・ヨト ・ヨト

Common Approaches

- Variable selection as usual: Regularisation, Cross-Validation, AIC/BIC.
 - Targets on prediction error, not decision-making subset.

Common Approaches

- Variable selection as usual: Regularisation, Cross-Validation, AIC/BIC.
 - Targets on prediction error, not decision-making subset.
- Include interactions between treatment and each variable.
 - Perform variable selection only on interaction terms.
 - Better, but still targets prediction error.
 - Variable may interact with treatment, but not be qualitative interaction.

Common Approaches

- Variable selection as usual: Regularisation, Cross-Validation, AIC/BIC.
 - Targets on prediction error, not decision-making subset.
- Include interactions between treatment and each variable.
 - Perform variable selection only on interaction terms.
 - Better, but still targets prediction error.
 - Variable may interact with treatment, but not be qualitative interaction.
- Onivariate scores based on magnitudes and locations of crossing in interaction plots.
 - Rank variables based on individual scores.
 - Decide on where to make cutoff.

- Assume we know the true model and parameters.
- Let $a^*(\mathbf{X})$ denote optimal treatment rule.
- Then $a^{*}(X) = 1$ if E[Y|X, A = 1] > E[Y|X, A = 0].
 - Note: $a^*(X)$ is a function of true parameters.

Proposed Approach: "No Regret"

- Consider "Regret" from using subset X_S instead of full optimal.
- Idea: For every patient, compare response obtained using policy based only on X₅ to optimal response.

Proposed Approach: "No Regret"

- Consider "Regret" from using subset X_S instead of full optimal.
- Idea: For every patient, compare response obtained using policy based only on X_S to optimal response.
- Formally define parameter, R_S:

$$R_{\mathcal{S}} = E_{\mathcal{X}} \left\{ E[Y|\mathcal{X}, A = a^{*}(\mathcal{X})] - E[Y|\mathcal{X}, A = a^{*}_{\mathcal{S}}(\mathcal{X}_{\mathcal{S}})] \right\},\$$

 $a^{*}(X)$ is optimal treatment rule. $a_{S}^{*}(X_{S})$ is best available treatment rule using only subset X_{S} .

(4月) (4日) (4日)

Proposed Approach: "No Regret"

- Consider "Regret" from using subset X_S instead of full optimal.
- Idea: For every patient, compare response obtained using policy based only on X_S to optimal response.
- Formally define parameter, R_S:

$$R_{\mathcal{S}} = E_{\mathcal{X}} \left\{ E[Y|\mathcal{X}, A = a^{\star}(\mathcal{X})] - E[Y|\mathcal{X}, A = a^{\star}_{\mathcal{S}}(\mathcal{X}_{\mathcal{S}})] \right\},\$$

 $a^{*}(X)$ is optimal treatment rule. $a_{S}^{*}(X_{S})$ is best available treatment rule using only subset X_{S} .

- Goal: No Regret!
 - Formal hypothesis test on univariate parameter, $H_0: R_S = 0$.

- Here, decision based on full model is
 - If $X_3 > 0.5$ then give Treatment 1. Otherwise Treatment 0.

э

< □ > < □ > < □ > < □ > < □ >

- Here, decision based on full model is
 - If $X_3 > 0.5$ then give Treatment 1. Otherwise Treatment 0.

- Consider subset with X_1 and X_2 only.
 - Then decision rule is: ALWAYS give treatment 1.

- Here, decision based on full model is
 - If $X_3 > 0.5$ then give Treatment 1. Otherwise Treatment 0.

- Consider subset with X_1 and X_2 only.
 - Then decision rule is: ALWAYS give treatment 1.
 - Apply this rule.
 - Regret is (weighted) difference between curves!

- Here, decision based on full model is
 - If $X_3 > 0.5$ then give Treatment 1. Otherwise Treatment 0.

- Consider subset with X_1 and X_2 only.
 - Then decision rule is: ALWAYS give treatment 1.
 - Apply this rule.
 - Regret is (weighted) difference between curves!
- If we throw out X_1 and X_2 and just keep X_3 , NO REGRET.

<ロト < 同ト < ヨト < ヨト

• To conduct hypothesis test, $H_0 : R_S = 0$, need model.

æ

・ロト ・部ト ・ヨト ・ヨト

Procedure

- To conduct hypothesis test, $H_0 : R_S = 0$, need model.
- To allow for flexible model, use nonparametric regression for response given each treatment condition.
 - Any is suitable, choose your favourite!

- Can now test any pair of nested subsets.
- $R_S = 0$ denotes that reduced subset is sufficient for decision-making.
- How to test H_0 : $R_S = 0$?

・ロト ・四ト ・ヨト ・ヨト

- Can now test any pair of nested subsets.
- $R_S = 0$ denotes that reduced subset is sufficient for decision-making.
- How to test $H_0 : R_S = 0$?
- Univariate parameter, R_S , is function of parameters for full and reduced models.
- Can estimate by $\widehat{R_S}$ via plugging in parameter estimates.

- Can now test any pair of nested subsets.
- $R_S = 0$ denotes that reduced subset is sufficient for decision-making.
- How to test $H_0 : R_S = 0$?
- Univariate parameter, R_S , is function of parameters for full and reduced models.
- Can estimate by $\widehat{R_S}$ via plugging in parameter estimates.
- Using (asymptotic) joint distribution of estimated parameters, transform to obtain distribution of $\widehat{R_S}$.

Backward Elimination Procedure

Application: Imbed testing in backward elimination.

æ

Backward Elimination Procedure

Application: Imbed testing in backward elimination.

• Step 1: Estimate parameters in model.

э

Backward Elimination Procedure

Application: Imbed testing in backward elimination.

- Step 1: Estimate parameters in model.
- Step 2: For each patient, now have predicted response under each treatment. So have estimated treatment rule.

- Step 1: Estimate parameters in model.
- Step 2: For each patient, now have predicted response under each treatment. So have estimated treatment rule.
- Step 3: Remove one predictor to get reduced subset, X_S , and redo estimation under reduced model.

- Step 1: Estimate parameters in model.
- Step 2: For each patient, now have predicted response under each treatment. So have estimated treatment rule.
- Step 3: Remove one predictor to get reduced subset, X_S , and redo estimation under reduced model.
- Step 4: Using the two decision rules, can directly compute plug-in estimate of Regret.

- 4 周 ト 4 日 ト 4 日 ト

- Step 1: Estimate parameters in model.
- Step 2: For each patient, now have predicted response under each treatment. So have estimated treatment rule.
- Step 3: Remove one predictor to get reduced subset, X_S , and redo estimation under reduced model.
- Step 4: Using the two decision rules, can directly compute plug-in estimate of Regret.
- Step 5: Repeat for all predictors, and choose the resulting subset with smallest Regret.

- Step 1: Estimate parameters in model.
- Step 2: For each patient, now have predicted response under each treatment. So have estimated treatment rule.
- Step 3: Remove one predictor to get reduced subset, X_S , and redo estimation under reduced model.
- Step 4: Using the two decision rules, can directly compute plug-in estimate of Regret.
- Step 5: Repeat for all predictors, and choose the resulting subset with smallest Regret.
- Step 6: Repeat treating current model as full model.

- Step 1: Estimate parameters in model.
- Step 2: For each patient, now have predicted response under each treatment. So have estimated treatment rule.
- Step 3: Remove one predictor to get reduced subset, X_S , and redo estimation under reduced model.
- Step 4: Using the two decision rules, can directly compute plug-in estimate of Regret.
- Step 5: Repeat for all predictors, and choose the resulting subset with smallest Regret.
- Step 6: Repeat treating current model as full model.
- Continue until desired stopping criterion met.

ACTG175 Analysis

- Two treatments for comparison:
 - AZT + ddl (Best on average across all patients).
 - **2** AZT + ddC.
- Using 16 candidate predictors in Backward Elimination removes 10 and keeps 6.
 - Next one has (Bonferroni corrected) p-value around 0.20.

Variables selected as important for decision making. Values in table represent p-values from using full model of size 6, and seeking to reduce to model of size 5.

Covariate	Estimated Regret	p-value	Corrected p-value
number of days of previous antiretroviral therapy	0.01659	0.0029	0.0174
symptomatic indicator	0.02172	0.0004	0.0020
CD4 T cell count at baseline	0.03062	≤ 0.0001	≤ 0.0001
race	0.03787	≤ 0.0001	≤ 0.0001
indicator of prior AZT use	0.07317	≤ 0.0001	≤ 0.0001
age	0.07393	≤ 0.0001	\leq 0.0001

Marginal Covariates-Treatment Interaction

Marginal Covariates-Treatment Interaction Plot

Treatment response surfaces are predicted based on regression for each treatment, and marginal interaction plots are generated via Monte Carlo integration over the other covariates.

Marginal Covariates-Treatment Interaction

Marginal Covariates-Treatment Interaction Plot

Treatment response surfaces are predicted based on regression for each treatment, and marginal interaction plots are generated via Monte Carlo integration over the other covariates.

• Looks like no importance of *Age* or *AZT Usage* for decision-making?

Conditional Covariates-Treatment Interaction

Conditional Covariates-Treatment Interaction Plot

Interaction of *Age* and *Treatment* stratified by *AZT Usage*, along with age distribution in each group.

э

< □ > < □ > < □ > < □ > < □ >

Conditional Covariates-Treatment Interaction

Conditional Covariates-Treatment Interaction Plot

Interaction of *Age* and *Treatment* stratified by *AZT Usage*, along with age distribution in each group.

• Looks like a subgroup may benefit from alternate treatment!

- Cross-validation to evaluate the treatment policy.
- Value is estimated by computing mean response on holdout data for those observations consistent with the treatment policy found by each method.
 - Averaged over 100 splits of data (with standard deviation).

Treatment Policy	Percent Patients Treated with AZT+ddl	Value Increase
All treated with AZT+ddl	100%	9.4 (3.1)
Policy from SA	51.1%	9.5 (5.3)
Policy from NP	50.4%	19.1 (4.5)

Value increase compared to AZT + ddC

SA: sequential advantage (Fan et al., 2016). NP: Nonparametric regression variable selection procedure.

- How would medical professional use these results?
- Input patient values, have computer run procedure and spit out predicted best treatment.
 - May not appreciate "Black Box".

- How would medical professional use these results?
- Input patient values, have computer run procedure and spit out predicted best treatment.
 - May not appreciate "Black Box".
- Instead, take results from this estimated policy and provide friendly interface.
 - Now have binary response data, i.e. predicted best treatment for each patient in data.
 - Construct decision tree from this new dataset.
 - Provide this visual representation of treatment rule.

Treatment Policy Tree

Decision tree approximation to the optimal treatment policy. Z: AZT+ddC. D: AZT+ddl.

- Two (related) questions you may ask:
 - What happens with a large number of predictors? Backward elimination may not be well-suited.
 - Why backward elimination, not forward selection?

- Two (related) questions you may ask:
 - What happens with a large number of predictors? Backward elimination may not be well-suited.
 - Why backward elimination, not forward selection?
- First is straightforward.
 - Use screening method to reduce number of predictors.
 - Here, screen predictors in each treatment group separately.
 - Only variables deemed to have non-zero effect in at least one group are kept.

- Two (related) questions you may ask:
 - What happens with a large number of predictors? Backward elimination may not be well-suited.
 - Why backward elimination, not forward selection?
- First is straightforward.
 - Use screening method to reduce number of predictors.
 - Here, screen predictors in each treatment group separately.
 - Only variables deemed to have non-zero effect in at least one group are kept.
- Second, a bit more subtle.

- For forward selection, we consider addition of each possible variable, one-at-a-time.
 - Need to fit model for each candidate subset obtained by adding one predictor.
 - Need to do this at every step.
 - Depending on method, fitting can be expensive, although can be done in parallel.

< □ > < □ > < □ > < □ > < □ >

- For forward selection, we consider addition of each possible variable, one-at-a-time.
 - Need to fit model for each candidate subset obtained by adding one predictor.
 - Need to do this at every step.
 - Depending on method, fitting can be expensive, although can be done in parallel.
- For backward elimination, same issue.
 - So what's the difference?

Why Backward Elimination?

- Can use approximation to backward elimination.
 - Start with full fit.
 - Using joint Gaussian distribution of estimated parameters, can approximate results for any subset.

Why Backward Elimination?

- Can use approximation to backward elimination.
 - Start with full fit.
 - Using joint Gaussian distribution of estimated parameters, can approximate results for any subset.
- Removing X_j from model is equivalent to setting some parameter(s) to zero.

< □ > < □ > < □ > < □ > < □ >

Why Backward Elimination?

- Can use approximation to backward elimination.
 - Start with full fit.
 - Using joint Gaussian distribution of estimated parameters, can approximate results for any subset.
- Removing X_j from model is equivalent to setting some parameter(s) to zero.
 - Obtain distribution for any subset by conditioning on the appropriate set of parameters being zero.
 - Once again, multivariate Gaussian with known conditional distribution.
- No need to refit at all!

Benefits:

- Selection of quantitative interactions represents variables relevant for decision-making.
- Approach directly targets difference from optimal decision.
- Can apply to multiple treatments, not just two.

(4回) (1日) (日)

Benefits:

- Selection of quantitative interactions represents variables relevant for decision-making.
- Approach directly targets difference from optimal decision.
- Can apply to multiple treatments, not just two.

Additional work:

- Adapt to dynamic treatments, i.e. multiple decision points.
 - Which variables?
 - Which time point?
 - What is the trigger to make a switch?

・ 何 ト ・ ラ ト ・ ラ ト