Expected Residual Life time and
Years of Life Lost

Bendix Carstensen Steno Diabetes Center Copenhagen, Denmark
& Dept. of Biostatistics, University of Copenhagen

VicBiostats, Melbourne,

23 February 2017

http://BendixCarstensen.com

1/ 41

Life lost to disease

Persons with disease live shorter than persons without

v

The difference is the life lost to disease — years of life lost

v

v

Possibly depends on:

> sex

> age

» duration of disease

» definition of persons with/out disease

Conditional or population averaged?

v

... the latter gives a seductively comfortable single number

v

v

... the former confusingly relevant insights
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Expected life time — the formals:

...the age at death integrated w.r.t. the distribution of age at
death:

EL = /ooaf(a)da
0

The relation between the density f and the survival function S is
f(a) = —=5'(a), so integration by parts gives:

EL:/ a(—S'(a))da = — {aS(a)roJr/ S(a)da
0 0 0
The first term is 0 so:

EL = /OOOS(a)da
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Expected life time illustrated

» Take, say 200, persons

» follow till all are dead

» compute the mean age at death (life time)
» — that is the life expectancy (at birth)
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Expected life time and years lost

» ERL (Expected Residual Lifetime):
Area under the survival curve

YLL (Years of Life Lost) (to diabetes, say):
ERLyop — ERLpy

difference between areas under the survival curves

v

v

= area between the curves

v

v

... all the way till all are dead
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Wikipedia: PYLL
Potential Years of Life Lost

» Fix a threshold, T', (the population EL, or say 75)
» A person dead in age a < T contributes T'— a
» A person dead in age a > T contributes 0

...seems to assume that the expected age at death is T' regardless
of attained age 7
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WHQO — Years of Life Lost

Rationale for use

Years of life are lost (YLL) take into account the age at which deaths occur by
giving greater weight to deaths at younger age and lower weight to deaths at
older age. The years of life lost (percentage of total) indicator measures the YLL
due to a cause as a proportion of the total YLL lost in the population due to
premature mortality.

Definition

YLL are calculated from the number of deaths multiplied by a standard life
expectancy at the age at which death occurs. The standard life expectancy used
for YLL at each age is the same for deaths in all regions of the world (...)

www.who.int/whosis/whostat2006YearsO0fLifeLost.pdf

= a person dying in age a contributes ERL(a). ..
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Comparing men and women

» When a man dies age a, say,

>

YLL is ERL,(a)> 0

» — the expected residual life time of a woman aged a.

» When a woman dies age a, say,

>

YLL is ERL,,(a)> 0

» — the expected residual life time of a man aged a.

» ...s0 both sexes lose years relative to the other !
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Healthy lifestyle and excercise. ..

> Any one who dies before age 75 (PYLL)
Any one who dies (WHO YLL)
... contribute a positive number to YLL

v

v

v

= any subgroup of the population have positive years of life

lost when compared to the general population!

v

v

vV VvV v Vv

No shortcuts:

no unfounded algorithms

the YLL is a difference of expectations

...well, indeed compared to any population (men vs. women)

use a statistical model (specify f(a), that is)

diabetes in Denmark as an example
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How the

world looks

A(a)

Well

Hw(a)

Dead

DM

Hpm(a,d)

\

Dead(DM)
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Comparing DM and well

YLL:/ Sw(a) — Sp(a)da
0
the conditional YLL given attained age A, just use:
Sw(alA) = Sw(a)/Sw(A),  Sp(alA) = Sp(a)/Sp(A)

The survival functions we need are:

i@ = exp (= [wwrwan), Sola) = esp (= [ un(wan)

...oris it?
Assumes that persons in “Well" cannot contract “DM"

The immunity assumption — which is widely used in the literature
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How the world looks

Well DM

(@) Hom()

v v

Dead Dead(DM)

... with immunity to diabetes
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Comparing DM and Well in the real world

YLL = /oo Sw(t) — Sp(t)dt
still the same, but Sy (¢) should be:
Sw(a) =P {Well}(a) + P {DM}(a)

wel |[—2& gl oy

Hw(a) Hom(2)

Dead Dead(DM)
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Comparing DM and well in the real world

The survival function Sy (a) is the sum of:

P {Well}(a) = exp (— /Oa,u,w(u) + A(u)) du
and

P {DM}(a) = / P {survive to s, DM diagnosed at s}
0

x P {survive with DM from s to a} ds

_ /Oa)\(s)exp <— /OSMWW) + \(u) du>
X exp (— /sa,up(u) du) ds i

Comparing DM and well in the real world

The conditional survival function given Well at A is the sum of

a

P {Well|Well at A} (a) = exp (_/A
P {DM|Well at A} (a) = /a)\(s)exp (— /Asuw(u) + Au) du)

A

X exp (— /Sa,up(u) du) ds

Note: This is not Sy (a)/Sw(A) because we are not
conditioning on being alive, but
conditioning on being alive and well at A

pw (u) + )\(u)) du
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A brutal shortcut

...s000 hairy, so why don't we not just use the total population
mortality, i, and instead compare:

S1(0) = e (— [wr(an) . So(w) = e (= [ un(wan)

There is no simple inequality between S7 and the correctly
computed Sy so there is no guarantee that it will be useful, nor the
direction of bias

The comparison will be between a random person with diabetes
and a random person (with or without diabetes)

Empirical question whether this is a reasonable approximation
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From probability theory to statistics:

v

get data on diabetes and death events by diabetes status

v

get data on risk time by diabetes status
fit models for the rates

v

v

get expressions for py(a), A(a) and pp(a)

v

compute the integrals for say A = 50, 60, ...
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From probability theory to statistics: data

> library( Epi )
> data( DMepi )
> head( DMepi )

sex A P X D.nD Y.nD D.DM Y.DM
1 M O 1996 1 28 35453.65 0 0.4757016
2 F 0 1996 9 19 33094.86 0 3.8767967
3 M1 1996 4 23 36450.73 0 4.9199179
4 F 11996 7 19 34789.99 0 7.2484600
5 M 2 1996 7 7 35328.92 0 12.4743326
6 F 2 1996 2 8 33673.43 0 8.0951403

Well A& g pm

Hw(@) Hom(@)
\
Dead Dead(DM)
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From probability theory to statistics: models

knots used for splines in all models
.kn <- seq(40,95,,6)

.kn <- seq(1996,2011, ,4)

.kn <- seq(1910,1970,,6)

APC-model for death for non-DM men

W.m <- glm( D.nD ~ Ns( A,knots=a.kn) +

Ns(P ,knots=p.kn) +

Ns (P-A,knots=c.kn),

log(Y.nD),

poisson,

subset ( DMepi, sex=="M" & A>29 ) )

#
a
p
c
#
#
#
m

offset
family
data

+++++VVVVVVVYVY

... estimates mortality (and incidence) rates over the grid:
» age: 30 — 99
» calendar time: 1996 — 2015
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From probability theory to statistics: predictions

Mortality rates for men in ages 30 — 100 using rates from 2012:

> nd <- data.frame( A = seq(30,99.8,0.2)+0.1,
+ P = 2012,

+ Y.nD = 1,

+ Y.DM = 1,

+ Y.T =1)

> muW.m <- ci.pred( mW.m, nd )[,1]
> cbind( nd$A, muW.m ) [200+0:5,]

muW.m
200 69.9 0.02017309
201 70.1 0.02056253
202 70.3 0.02096210
203 70.5 0.02137211
204 70.7 0.02179289
205 70.9 0.02222479

Rates representation when used in computing integrals:
Compute the function value in small equidistant intervals
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From probability theory to statistics: YLL calculation

Epi package for R contains the dataset DMepi as well as the
functions erl and y11 that implements the formulae:

> YLL.m.60 <- yl1( int=0.2,
+ mulW=mulW.m, muD=muD.m, lam=lam.m,
+ A=60, age.in=30 )

This is then done for different conditioning ages (A), men/women
and based on predicted rates from 1996, 2006 and 2016.
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Years of life lost to disease: Conclusion

» Use a model
» for all your rates
» use your probability theory

» credible models for rates requires:
smooth parametric function of age and calendar time

» continuous time formulation simplifies concepts and computing
» using non-DM mortality overestimates YLL

» |f you cannot do it correctly for want of data:
compare with the total population mortality

» Note: Conditional YLLs — given date, age and sex.
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Years of life lost to disease: Generalization

» YLL is really a generalization

» from a multistate model

» of the expected sojourn time in a given state
» ...well, differences of these

» here is an example
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Intensive Conventional
DM DM
1,108. 2 _Lrddy, 762.5 106Gy,
80 80
35(3.2) 51(6.7)
_13(98) | D CVD) 1467 | b cvD)
13 14
17 (12.9) 31 (14.7)
m 5(11.2)._ D(2 CVD) 11 (16.3L D(2 CVD) |29/
Hazard ratios
CVD event Mortality
HR, Int. vs. Conv. 0.55 (0.39;0.77) 0.83 (0.54; 1.30)
Ho: PH btw. CVD groups p=0.261 p=0.438
Hyp: HR =1 p=0.001 p=0.425
HR vs. 0 CVD events:
0 (ref.) 1.00 1.00
1 2.43 (1.67;3.52) 3.08 (1.82; 5.19)
2 3.48 (2.15;5.64) 4.42 (2.36; 8.29)
3+ 7.76 (4.11;14.65)
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Modeling

» Cut the follow-up time for each person by state
Split the follow-up time in 1-month intervals

Poisson model with smooth effect of time since randomization,
sex and age:

\{

v

» HR estimates
» Estimates of baseline hazard
» Hazard for any set of covariates

Allows calcualtion of expected sojourn time in any state

v

— analytically this is totally intractable. . .

v
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Estimating sojourn times

» Use simulation of the state occupancy probabilities:

» Lexis machinery in the Epi package for multistate
representation

» splitLexis to subdivide follow-up for analysis

» simLexis for simulation to derive probabilities and sojourn
times

» — simulates a cohort through the model, so probabilities are
just empirical fractions
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Intensive Conventional
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o DEIWEETT Zroups (HK US3 [957 CI US4, 13U, p=U43). IS,
the reduced mortality was primarily due to reduced risk of CVD.
The patients in the intensive group experienced a total of 90
cardiovascular events vs 195 events in the conventional
group. Nineteen intensive-group patients (24%) vs 34
conventional-group patients (43%) experienced more than
one cardiovascular event. No significant between-group dif-
ference in the distribution of specific cardiovascular first-
event types was observed (Table 2 and Fig. 4).

Cumulative mortality (%)

T . . . .
0 4 8 12 16 20 Microvascular complications Hazard rates of progression
o . Years since randomisation rates in microvascular complications compared with baseline
umber at ris| . e . .
Intensive 80 76 66 58 54 43 status are shown Fig. 3. Sensitivity analyses showed a negli-
Conventional 80 78 65 45 34 24

gible effect of the random dates imputation.

Progression of retinopathy was decreased by 33% in the
100 intensive-therapy group (Fig. 5). Blindness in at least one eye
was reduced in the intensive-therapy group with an HR of 0.47
(95% CI 0.23, 0.98, p=0.044). Autonomic neuropathy was
decreased by 41% in the intensive-therapy group (Fig. 5). We
observed no difference between groups in the progression of
peripheral neuropathy (Fig. 5). Progression to diabetic ne-
phropathy (macroalbuminuria) was reduced by 48% in the
intensive-therapy group (Fig. 5). Ten patients in the
! conventional-therapy groups vs five patients in the intensive-
; : ; : : . therapy group progressed to end-stage renal disease (p=0.061).

Death or CVD event (%)

Years since randomisation
Number at risk

Intensive 80 66 56 49 41 31 . .
Conventional 80 61 40 27 18 13 Discussion 34/ 41

Expected lifetime and YLL (well, gained)

Expected lifetime (years) in the Steno 2 cohort during the first 20
years after baseline by treatment group and CVD status.

State Intensive Conventional Int.—Conv.

Alive 15.6 14.1 1.5
No CVD 12.7 10.0 2.6
Any CVD 3.0 4.1 ~1.1

» Simulate a cohort with same covariate dist’ as the study
» Population averaged years gained alive / CVD-free

» Refer only to the Steno 2 trial population

» Not generalizable

> ...but we have a model
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Probability
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Women Age
Intensive Conventional Intensive Conventional

Men
1.0 1.0 - .
e —
. 0.8 .
. 0.6 .
. 0.4 .
. 0.2 .
e S — S
0.6 .
50
0.4 .
0.2 .

/4

Ability
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Expected lifetime (years) and —YLL (YLG) during the first 20
years after baseline by sex, age, treatment group and CVD status.

sex Men Women

state age Int. Conv. YLG Int. Conv. YLG

Alive 45 185 175 10 191 184 0.7
50 172 161 1.1 180 172 0.8
55 156 138 18 174 159 1.6
60 139 116 22 155 137 1.8
65 11.2 95 18 133 114 20

No CVD 45 149 125 24 158 143 15
50 140 111 29 151 129 22
55 12.2 97 25 143 116 27
60 10.9 82 27 124 99 26
65 9.0 6.7 22 107 83 24
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History

» Epi package grew out of
“Statistical Practice in Epidemiology with R"
annually since 2002 in Tartu Estonia
http://BendixCarstensen. com/SPE

» Lexis machinery conceived by Martyn Plummer, IARC

» Naming originally by David Clayton & Michael Hills, stlexis
in Stata, later renamed stsplit

» David Clayton wrote a lexis function for the Epi package.
Obsolete now.
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Thanks for your attention
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