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4 Université d’Angers (France)



Contents

1. Framework: Multiple testing in clinical trial

2. At least one win

3. At lest r wins

4. R code: rPowerSampleSize

5. Concluding remarks



Clinical Context

Clinical endpoint: an event or outcome that can be measured
objectively to determine whether the intervention being studied is
beneficial. Some examples of endpoints are survival, improvements in
quality of life, relief of symptoms, and disappearance of the tumor.

I The use of multiple endpoints to characterize product safety
and efficacy measures is an increasingly common feature in
recent clinical trials;

I Usually, these endpoints are divided into one primary endpoint
and several secondary endpoints;

I Nevertheless, when we observed a multi factorial effect it is
necessary to use some multiple primary endpoints or a
composite endpoint.



Clinical Context

Clinical endpoint: an event or outcome that can be measured
objectively to determine whether the intervention being studied is
beneficial. Some examples of endpoints are survival, improvements in
quality of life, relief of symptoms, and disappearance of the tumor.

I The use of multiple endpoints to characterize product safety
and efficacy measures is an increasingly common feature in
recent clinical trials;

I Usually, these endpoints are divided into one primary endpoint
and several secondary endpoints;

I Nevertheless, when we observed a multi factorial effect it is
necessary to use some multiple primary endpoints or a
composite endpoint.



Industrial Statistical Challenge in Nutrition

Effects of dairy products are often Multifactorial, Smaller than
pharmaceutical products, with an Higher Variability

Industrial statistical challenge

1. Sample Size Determination in the context of Multiple
Primary Endpoints;

2. Data Analysis in the context of Multiple Primary Endpoints.



Multiple Primary endpoints

The choice of the sample size computation procedure depends on
strategy associated to primary endpoint definition 1.

I “At least one win”: The trial’s main objective is met if one or more
individual primary objectives are achieved ;

I “All must win”: The trial’s main objective is met if all the m
individual primary objectives are achieved ;

I “At least r wins”: The trial’s main objective is met if r or more
individual primary objectives are achieved (1 6 r 6 m).

1Dmitrienko, A. et al.(2012), Statistics in Medicine.



Today Aims

1. Brief description on Sample Size Computation and Data
Analysis in the context of “At least one win” primary
continuous endpoints;
Lafaye de Micheaux P., Liquet B., Marques S. and Riou J., Power and sample size determination in clinical trials

with multiple primary continuous correlated end points. Journal of Biopharmaceutical Statistics 24:2, 378-97,

(2014).

2. More Details on Sample Size Computation Methodology in
the context of “‘At least r wins” primary endpoints.
Delorme P., Lafaye de Micheaux P., Liquet B. and Riou J., Type-II Generalized Family-Wise Error Rate Formulas

with Application to Sample Size Determination. Statistics in Medicine (2016) In press.
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Sample size for one endpoint: single hypothesis testing
True state of Nature
H0 is true H1 is true

Decision
We decide H1 Type I error No error
We decide H0 No error Type II error

The Type I error is when one decides H1 while it is H0 that is true.
The Type II error is when one decides H0 while it is H1 that is true.

power function = P [not decide H0 when H1 is true]

≡ 1 − β.

Generally easy to determine the necessary sample size n to use
in order to control (with some given thresholds) both the maximal
Type I error rate (under H0) and a Type II error rate (under H1).



Sample size for one endpoint: single hypothesis testing
True state of Nature
H0 is true H1 is true

Decision
We decide H1 Type I error No error
We decide H0 No error Type II error

The Type I error is when one decides H1 while it is H0 that is true.
The Type II error is when one decides H0 while it is H1 that is true.

power function = P [not decide H0 when H1 is true]

≡ 1 − β.

Generally easy to determine the necessary sample size n to use
in order to control (with some given thresholds) both the maximal
Type I error rate (under H0) and a Type II error rate (under H1).



Sample size for one endpoint: single hypothesis testing
True state of Nature
H0 is true H1 is true

Decision
We decide H1 Type I error No error
We decide H0 No error Type II error

The Type I error is when one decides H1 while it is H0 that is true.
The Type II error is when one decides H0 while it is H1 that is true.

power function = P [not decide H0 when H1 is true]

≡ 1 − β.

Generally easy to determine the necessary sample size n to use
in order to control (with some given thresholds) both the maximal
Type I error rate (under H0) and a Type II error rate (under H1).



Sample size for multiple primary endpoints ?
We want to evaluate the m following hypotheses:

H1
0 : µE

1 − µ
C
1 6 d1 versus H1

1 : µE
1 − µ

C
1 > d1

H2
0 : µE

1 − µ
C
2 6 d2 versus H2

1 : µE
2 − µ

C
2 > d2

...

Hm
0 : µE

m − µ
C
m 6 dm versus Hm

1 : µE
m − µ

C
m > dm

Each one of these elementary hypotheses will be tested using an
associated test statistic. We thus have m test statistics T1, . . . , Tm.

Multiple hypothesis testing, also called multiple comparisons or
multiple testing, refers to the simultaneous testing of more than
one individual hypothesis at a time.



Family of hypotheses
We have defined a family of hypotheses H1, . . . ,Hm. We have m
(individual) Type I errors, one for each of the individual hypotheses.

We now want to define some kind of unique overall Type I error rate
for the whole family.

Note that, for a given family of hypotheses, an overall Type I error rate
depends on which ones are assumed to be true and which ones are
assumed false.

A (global) Type I error rate can thus be controlled in (at least) two
ways:
I Weak: The overall Type I error rate 6 α when all null

hypotheses are supposed to be true.
I Strong: All overall Type I error rates 6 α, for any (sensible)

given configuration of false and true null hypotheses.



FamilyWise Error Rate

The most widely used overall Type I error rate is probably the
Family Wise Error Rate (FWER) defined as

FWER = P(commit at least one Type I error).

Possible scenarii for m tests
Decision

Null Hypotheses Not Rejected Rejected Total

True state
True U V m0

False T S p
Total W R m

Type-I FWER = P(V > 1).

Type-I q-gFWER = P(V > q).
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Power control

Possible scenarii for m tests

Decision
Null Hypotheses Not Rejected Rejected Total

True state
True U V m0

False T S p
Total W R m

Disjunctive Power = P(S > 1),

r-Power = P(S > r), 1 6 r 6 p,

Conjunctive Power = P(S = p).



At least one win: Individual testing approach

I Let δ = (δ1, . . . , δm)T , with δj = µE
j − µ

C
j , (1 6 j 6 m), be the

vector of the true differences between the test(E) and the
control(C) products;

I Individual Hypotheses:

H
j
0 : δj = 0 versus H j

1 : δj , 0;

I Global Hypothesis:

H0 = ∩m
j=1H

j
0 versus H1 = ∪m

j=1H
j
1.



Statistics

I When σ2
j are known, the standardized test statistic is:

Z(n)
j =

X̄E
j − X̄C

j√
2
nσj

, where X̄k
j =

1
n

n∑
i=1

Xk
i,j are the sample means for group k;

I When σ2
j are unknown, they are estimated by the pooled variances:

T (n)
j =

X̄E
j − X̄C

j√
2
n σ̂j

, where σ̂2
j =

1
2n − 2

n∑
i=1

[
(XE

i,j − X̄E
j )2 + (XC

i,j − X̄C
j )2

]
.



Simultaneous Control

I FamilyWise Error Rate:

FWER = pr(Reject at least one H j
0, 1 6 j 6 m|H0 is true),

= 1 − pr
{
(|Zn

1 | 6 cα) ∩ . . . ∩ (|Zn
m | 6 cα) |H0 is true

}
,

where cα is chosen to satisfy FWER = α, for a fixed

significance level α.

I Disjunctive Power:

1 − β = pr(Reject at least one H j
0, 1 6 j 6 m|H1 is true),

= 1 − pr
{
(|Zn

1 | 6 cα) ∩ . . . ∩ (|Zn
m | 6 cα) |H1 is true

}
,



Distribution

I Normality assumption and known covariance matrix:

Zn
H0

∼ Nm (0m,R) and Zn
H1

∼ Nm

√n
2

Pδ∗,R
 ,

where δ∗ , 0m is the value of δ under H1 and where R = PΣP is the
m ×m correlation matrix associated with Σ, with P the diagonal matrix
whose jth element is 1/σj .

I Asymptotic Context:

R̂−1/2Tn
L
−→ Nm (0m, Im) , under H0,

R̂−1/2
(
Tn −

√
nV̂δ∗

) L
−→ Nm (0m, Im) , under H1 : δ = δ∗ , 0m,

where R̂ = V̂ Σ̂ V̂ is a consistent estimator of R, the correlation matrix
of Tn =

√
nV̂(X̄E − X̄C), V̂ = diag

(
1/

√
σ̂2

j,E + σ̂2
j,C

)
and Σ̂ = Σ̂C + Σ̂E .



Application (1/2)
I Objective: Demonstrate the efficacy of the consumption of a dairy

product on seric antibody titres for three strains of Influenza virus;

I The product will be considered as effective if at least one out of the
three strains is statistically significant.

I Two pilot studies were planned to define the product effects and
variability. Both were multicentric double blind randomized controlled
trials conducted in France among elderly volunteers during the two
vaccination seasons 2005 and 2006;

I The mean differences between the two groups are:
δ̂ = (0.35, 0.28, 0.46)T ;

I The covariance matrix is: Σ̂ =

 5.58 2.00 1.24
2.00 4.29 1.59
1.24 1.59 4.09

 ;

I Desired Disjuntive Power: 0.80 , and desired Type-I error rate: 0.05.

I What is the required sample size ?



Application (2/2)

Table 1: Sample size computation with Global method and Individual
Procedure

Method Type-I error Sample size (n)
Global 0.05 359
Indiv 0.0178 336
Global: Global method based on multivariate model;

Indiv: Individual procedure for known covariance matrix.



At least r wins

Suppose we plan to collect some data from a true model.

Let us suppose a model P to be the true model for which p null hypotheses
are false and m − p are true.

For some r 6 p, our global type-II r-generalized family-wise error rate is:

βr ,m(P) = P(make at least p − r + 1 individual type-II errors

among the p false hypotheses),

1 − βr ,m(P) = P(reject at least r of the p false null hypotheses)

called generalized disjunctive power by Dmitrienko et al. (2015).



Motivation: Clinical trial in vaccination
ANRS 114 Pneumovac trial: measure the effect of two vaccine
strategies against Streptococcus pneumoniae in adults infected by
the HIV, which are more susceptible to infections caused by this
bacterial pathogen.

Seven (m = 7) clinical endpoints: log-transformed (towards
Gaussianity) measurements of serotype-specific antibody titer
concentrations (continuous measurements in µg/ml).

Note: serotype refers to distinct variations within a species of bacteria
or viruses or among immune cells of different individuals.

Pedrono et al. (2009) suggest that one vaccine strategy might be
considered as superior to the other when at least 3, 5 or 7
serotypes are found significant.

Aim: compute the sample sizes necessary for a weak control of
the r-power for r = 3, 5, 7 for different multiple procedure.
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Multiple testing procedures

Many multiple testing procedures have been developped to control
the FWER. They are usually categorized as single-step or step-wise:
I One-step (or single-step): all p-values are compared to a

pre-determined cut-off, usually only a function of α and m
Equivalently, all test statistics Tk are compared to a common
predetermined cut-off value ckm.

I Step-down (e.g. Holm);
I Step-up (e.g. Hochberg).

We note p1:m 6 · · · 6 pm:m the ordered p-values, and we note
H0:1, . . . ,H0:m the ordered hypotheses corresponding to the order
statistics T1:m 6 · · · 6 Tm:m.



Step-up procedure

  

T
1:m

 > v
1

H
0

1,...,H
0

m rejected

T
2:m

 > v
2

H
0
2,...,H

0
m  rejected, 

H
0

1 retained

T
m:m

 > v
m

H
0

m  rejected, 
H

0
1,...,H

0
m-1 retained

H
0

1,...,H
0

m retained

yes

yes

yes

no

no

no



Hochberg procedure

The Hochberg’s algorithm proceeds as follows:

I Step 1: If pm:m < α or T1:m > u1 = c1−α, reject H0:i , i = 1, . . . ,m
and stop; otherwise go to Step 2.

I Step 2: If p(m−1):m < α/2 or T2:m > u2 = c1−α/2, reject
H0:i , i = 2, . . . ,m and stop; otherwise go to Step 3.

I · · ·

I Step m: If p1:m < α/m or Tm:m > um = c1−α/m, reject H0:m and
stop.



Control of the q-generalized-FWER

I Bonferroni’s single-step approach. Lehmann and Romano (2005)
states that a simple modification of the usual Bonferroni’s
procedure:
comparing marginal p-values to qα/m instead of α/m leads to a
control of the q-generalized family-wise error rate.

I Modified Hochberg’s step-up approach. Romano and Shaikh
(2006) proposed a modification of the usual Hochberg’s
procedure which leads to a control of the q-generalized
family-wise error rate for any structure of dependence of the
p-values.



Derivation of the r-Power: Step-up setting
For simplication we consider all null hypotheses are false: p = m.
The “r-Power” or multiple must-win power is:

Πr ,m = P(reject at least r false null hypotheses among m)

=
m−r∑
j=0

P (reject exactly m − j false hypotheses among m) .

For Step-Up methods, we have:

{reject exactly m − j hypotheses} ={
reject H0:(j+1), . . . ,H0:m

}
∩

{
not reject H0:1, . . . ,H0:j

}
={

T(j+1):m > uj+1

}
∩

j⋂
k=1

(Tk :m 6 uk ).



Derivation of the r-Power: Step-up setting

The r-Power can be written as:

Πu
r ,m =

m−r∑
j=0

P


 j⋂

k=1

(Tk :m 6 uk )

 ∩ (T(j+1):m > uj+1)

∣∣∣∣∣∣∣ ∩m
j=1 H

j
1


=

m−r∑
j=0

P
 j⋂
k=1

(Tk :m 6 uk )

 − P

 j+1⋂
k=1

(Tk :m 6 uk )




= 1 − P

m−r+1⋂
k=1

(Tk :m 6 uk )

 = 1 − “a Type II gFWER”.

The objective is now to obtain a computable expression, namely one
not involving order statistics.

For this purpose, we will need some theorems giving the joint CDF of
order statistics.



Theorem of Maurer and Margolin (1976):

Let ` = (`1, . . . , `q) such that 1 6 `1 6 . . . 6 `q 6 m and
u`1 6 . . . 6 u`q . We obtain the joint distribution of order
statistics:

P

 q⋂
h=1

(T`h :m 6 u`h )

 = (−1)`+

a∗∑
a=`

(−1)a+Pa

q∏
i=1

(
(∆ai) − 1

ai − `i

)

with `+ =
∑q

h=1 `h , ∆ai = ai − ai−1 and

Pa =
∑

j∈J (a,m)P
[⋂q−1

i=0

(⋂ai+1
k=ai+1 Tjk 6 u`i+1

)]
.

⇒We can now replace ordered statistics with unordered ones!



Sample Size Computation

Our developed formula depends only on the joint distribution
and the sample size, and if the joint distribution is known, the
sample size computation is possible.

We considered at this stage only continuous endpoints. This is
done using the following test statistics:

Tk =
(
V̂ar

(
X̄E

k − X̄C
k − dk

))−1/2
(X̄E

k − X̄C
k − dk ),

where X̄g
k = n−1

g
∑ng

i=1 Xg
i,k .

Different estimators of the variance of the difference between the
means have been implemented in our R package (function
indiv.analysis()) depending on the structure of Σg.
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Joint Distribution of Test Statistics for Continuous Multiple Endpoints
We investigate the case of a multivariate Gaussian distribution(

Xg
1, . . . ,X

g
ng

)>
∼ N

ng
m

(
(µg, . . . ,µg)>,Ing ⊗ Σg

)
,

Various classical scenarios on the structure of the covariance
matrices Σg:
I Unstructured covariance matrix

I When ΣE = ΣC

I When ΣE , ΣC

I Multisample compound symmetry covariance matrix:

K% = (1 − %)Im + %J with J =


1 ... 1
... 1

...

1 ... 1

 .
I Σg = σ2,gK%

I ΣE = ΣC = σ2K%



Joint Distribution of Test Statistics for Continuous Multiple Endpoints

I Unstructured covariance matrix

I When ΣE = ΣC , we get a multivariate type-II Student
distribution.

I When ΣE , ΣC , we get a a non-asymptotic
approximation to a multivariate type-II Student
distribution.

I Asymptotic distribution of T = (T1, . . . ,Tm) to a
multivariate Gaussian distribution.

I Multisample compound symmetry covariance matrix:

I Σg = σ2,gK%, we get T approx
∼ Kshirsagar distribution

I ΣE = ΣC = σ2K%, we get a Kshirsagar distribution
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Simulation Study

Recently, authors have used a Monte-Carlo simulation in order to compute
the r-power of a procedure in a clinical trial.

I New treatment against schizophrenia with a primary endpoint based on
change from baseline for three dosing groups;

I Continuous endpoints, true mean changes are expected to be given
by vector δ = (5.0, 5.0, 3.5)T ;

I We considered α = 0.025, n = 260, the same standard deviation for
each endpoint (σk = 18) and each group, and the same correlation
between all tests (% = 0.5) for each group;

I We considered Bonferroni, Holm and Hochberg Procedures, and
N=100,000 Monte-Carlo simulations.



As suggested by Dmitrienko et al. (2013), “the information presented in the central panel may be used to improve the sponsor’s

ability to characterize the dose-response relationship. If the sponsor was interested in identifying two or three doses with a

desirable efficacy profile, the sample size could be adjusted to achieve a higher value for the probability to detect at least two

significant doses.”



Computation time



Application to he Pneumovac trial
I Endpoints used for the evaluation of immunogenicity in the

Vaccine trials are means of antibody concentrations for each
serotype;

I Data comes from ANRS 114 Pneumovac Trial, where the
multivalent vaccine yields a response on 7 serotypes;

I Effect size and correlation were taken in Pedrono et al. (2009).
I We assume a common unstructured covariance matrix for both

vaccinal strategies

Normal Kshirsagar
r = 3 r = 5 r = 7 r = 3 r = 5 r = 7

Bonferroni 21 50 201 22 52 202
Hochberg (modified) 23 48 147 24 49 148
Holm 20 41 116 21 42 116



Sensitivity analysis
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rPowerSampleSize Package

I rPowerSampleSize package is available on
http://www.r-project.org

I First designed for the case r = 1 (see Lafaye et al (2014))
I The new version of the package can tackle any value of r 6 m.
I It includes functions related to power computation (Psirmd(),
Psirms(), Psirmu())

I The main function is indiv.rm.ssc() related to sample size
determination controlling the q-gFWER, for a given value of
r-power.



R code related to The Pneumovac trial

> nCovernE <- 1

> m <- 7

> r <- 3

> alpha <- 0.05

> pow <- 0.8

> q <- 1

> asympt <- FALSE # corresponding to Kshirsagar distribution

> delta <- c(0.55, 0.34, 0.38, 0.20, 0.70, 0.38, 0.86)

> sigma <- c(0.3520, 0.6219, 0.5427, 0.6075, 0.6277, 0.5527, 0.8066)

> var <- sigma ˆ 2

> SigmaE <- SigmaC <- cov

> maxpts <- 2500000

> abseps <- 0.001

> result <- indiv.rm.ssc(method = "Bonferroni", asympt = asympt, r = r, m = m,

+ p=m, nCovernE = 1, muC = NULL, muE = NULL, d = NULL, delta = delta,

+ SigmaC = cov, SigmaE = cov, power = pow, alpha = alpha,

+ interval = c(2, 100), q = q, maxpts = maxpts, abseps = abseps)

> result

[1] 22



From this finding (n = 22) the user could visualise the distribution of the number of

significant results (i.e, the realized values r) by using the plot.rPower() function

> nbcores <- parallel::detectCores() - 1

> set.seed(10)

> res.MC <- montecarlo(method = "Bonferroni", M = 10 ˆ 4, nE = 22, r = 3, m = 7,

+ nCovernE = 1, muC = rep(0 , 7), muE = delta, d = rep(0.0, 7),

+ SigmaE = cov, SigmaC = cov, alpha = 0.05, q = 1, nbcores = nbcores)

> res.MC$rpowBonf

[1] 0.7987

> plot.rPower(res.MC) # To produce plot in Figure 4.



Concluding Remarks
I General power formulas has been derived when one wants at least r

among m statistical tests to be significant.

I Formulas have been used to compute the necessary sample size to
control weakly or strongly the type-II r-generalized family-wise error
rate, for procedures that already control any type-I global error rate.

I Weak control at level β of the type-II r-generalized family-wise
error rate is reached when βr ,m(P) 6 β for a potential choice P of
the true model under which all null hypotheses tested are false.

I Strong control at level β occurs when βr ,m(P) 6 β for all potential
choices P of the true model such that p > r null hypotheses are
false.

I Available through rPowerSampleSize R package
I “At least one win”: Global and Individual methods;
I “At least r wins”: Single step and Step-Wise methods (Bonferroni,

Holm and Hocberg)

I A parallel implementation is available using the argument nbcores.

I Focus on continuous multiple endpoints→ Extend our work to
categorical, and mixed primary endpoints ...
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