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Big picture

* Goal: Estimate the causal effect of receiving one treatment relative
to a comparison condition

* Non-experimental studies use naturally occurring groups of
individuals, some who got the treatment and some who got the
comparison condition

* Problem is potential “selection bias":

+ Individuals in treatment group may differ quite a bit from those
in the comparison group

+ Thus, differences in outcomes may be due to those baseline
differences, not to the treatment itself

* Many approaches try to limit selection bias by adjusting for (or
matching on) covariates before estimating effects

» But what if those covariates are not measured perfectly?

* e.g., self-reported measures of height or weight, imperfect
measures of blood pressure, latent constructs for depression
or disability
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More formal: Potential outcomes model for defining
treatment effects

* Y(0)=potential outcome under comparison condition

* Y(1)=potential outcome under treatment condition

« T=treatment variable (1=treatment, 0=control)

« We observe Y,s = Tx Y(1)+ (1 —T)* Y(0)

+ The “fundamental problem of causal inference"

* The treatment effect for individual is D=Y(1)-Y(0)

* Interest usually in average treatment effects across a
population: E(D)=E(Y(1))-E(Y(0))

+ Goal in a non-experimental study: Use treatment group to
estimate E(Y(1)) and the comparison group to estimate
E(Y(0)), but accounting for the fact that the treatment and

comparison groups are not necessarily random samples from
the population of interest




Propensity score methods

* Propensity scores provide a way of “equating” the groups to
make the treated and comparison groups look as similar as
possible on the observed covariates

+ Propensity score = predicted probability of receiving the
treatment, given observed covariates
+ Typical ways of using propensity scores: matching, weighting,
subclassification (Stuart, 2010)
+ Today will focus on Inverse Probability of Treatment Weighting
(IPTW)

+ Treated group weights: 1/p
+ Comparison group weights: 1/(1-p)

« Separation of “design” and “analysis": Outcomes not
(typically) used in the propensity score process




The standard assumption underlying propensity score
analyses

* Most propensity score analyses rely on assumption of
unconfounded treatment assignment:
= T L(Y(0), Y(1))X
+ No unobserved differences between treatment and control
groups, given the observed covariates X

* What if treatment assignment actually depends on true X but all we
observe is a mis-measured version of it, W?
* e.g., decision to take a new treatment depends on true
underlying health status, but all we have are proxies for it
* e.g., decision to take a new treatment depends on blood sugar
levels, but all we have are claims data

« Steiner et al. (2011) and others have shown that bias reducing
ability of propensity scores can be diminished due to covariate
measurement error
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Some potential solutions

+ Latent variable approach: Model true, underlying latent
variable (Raykov, 2012)
+ Investigated in context of regression adjustment for propensity
scores
* Requires multiple indicators for the true covariate
+ (With Trang Nguyen | am investigating extensions of this
approach; initial results suggest best approach is to estimate a
“full" factor model that includes T in the factor model and then
include the factor score in the propensity score model)
+ Corrected propensity score weighting strategy (McCaffrey et
al., 2011; McCaffrey and Lockwood, 2016)
+ For propensity score weighting only
+ Assumes classical measurement error
+ Requires some external calibration information
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« Empirical expressions for resulting bias (Ogburn and
VanderWeele, 2013)
+ Under certain assumptions, show that controlling for a
mismeasured covariate will result in estimate between the
crude and true effect measures
+ Can help bound the effect
» Plus 3 other approaches | will briefly mention (SIM-EX,
Bayesian model, and sensitivity analysis) and another | will
cover in depth (multiple imputation)
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The multiple imputation approach

* Main idea: Use a source of information on the relationship
between W and X to multiply impute values of X|W

+ Intuitively, should account for uncertainty in imputations of X

* For now, will assume that we have some external validation
sample with data on X and W (and possibly other common
variables Z)

+ Things more complex without this
* (And are easier if internal validation data available)

 Imputations actually nested: m values of parameters drawn,
then n imputations from each parameter draw

» Run propensity score approach within each imputed dataset
+ Combine effect estimates across imputed datasets
» Has appeal due to flexibility (as with normal MI)
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But .. .the simple approach doesn’t work

« Can't just generate model of X given W in the calibration
sample and then apply that in the main sample to predict X

* Model uncongeniality if imputation model doesn’t incorporate
Tand Y




Multiple imputation - external calibration (MI-EC)

* Instead use MI-EC, which uses joint distribution of all
variables to generate imputations of X (Guo, Little, and
McConnell, 2012)

+ Constructs posterior distribution of f(X|T, Y, Z, W)

+ Gets information on joint distribution of X and W from the
validation sample

+ Gets information on joint distribution of W, T, Y, Z from the
main sample
» Key assumptions:
+ Multivariate normality:
« (Y, T,Z,X|W) ~ N(BW, X)
- Strong version of non-differential measurement error
< (Y, T,ZIX, W) =f(Y,T,Z|X)
* Measurement error can not depend on Z, T
» Standard assumption would have Z, T as conditioned on
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Specific steps for using MI-EC in the context of
propensity score analysis

@ Generate multiple (nested) imputations of the true covariate X
using MI-EC
© For each imputation:

@ Estimate propensity scores
@ Use a propensity score approach to estimate treatment effects
(we will use weighting)

© Combine results across nested multiple imputations, using
standard MI combining results for nested imputations
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Simulation set-up

+ X,Z jointly normally distributed, means 0, correlation p
« Treatment a logistic function of X, Z
+ Measurement error model: W|X ~ N(X,o?)
* Y afunction of T, X, and Z:
Y|T,X,Z ~ N(AT + 6xX + 622, 72)

* (So X the true confounder, but we only observe a
mis-measured version of it, W)

* Assume Ny ain = 2500, N, = 500

» Varied parameters, especially correlation between X and W




Methods compared

* Naive (just using W)
Gold standard (using X)

* MIEC using just Z, W (uncongenial)
* MIEC using W, Y, Z, and T (congenial)




Simulation results
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Summary of simulation results

* Ignoring the measurement error leads to bias

* More bias if X strongly related to treatment assignment
+ Less bias if X and Z strongly correlated

+ Less bias if X and W strongly related (high reliability)

« Even if Z not predictive of Y, including it in the procedure
helps a lot (“auxiliary variable")

+ Using MI-EC can correct for most of the bias

+ But using an uncongenial MI-EC (with only Z) worse than
naive approach (this is like a naive imputation using the
validation sample to fit the imputation model)
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Living in a disadvantaged neighborhood and mental
health outcomes

* Interest in the consequences of living in a disadvantaged
neighborhood on a variety of outcomes, including mental
health and substance abuse

« Data: National Comorbidity Survey Replication Adolescent
Supplement (NCS-A)

* Nationally representative survey of approximately 10,000
adolescents

+ Established score for neighborhood disadvantage used:
lowest tertile considered the “treatment” group

+ Compare adolescents in lowest tertile with those in upper
tertiles




Details of application

Covariates available: Gender, age, race/ethnicity, family
income, family structure, mother’s age at birth

True covariate: Mother’s report of her age at birth of child (not
always available)
Covariate measured with error: Child’s report of maternal age
at birth

+ In reality, not much measurement error (p = .94)

+ So have 2 additional scenarios where we add on additional

random noise to W (p = .72, p = .3)

(Actually restrict the sample to those with both versions
available, to use as a check)

Outcomes: Past-year substance abuse or dependence, past
year depression or anxiety

Use a random subset of 400 adolescents as the validation
sample
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Covariate balance

o Unweighted
o « Weighted
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Outcome results

 Substance Abuse/Dependence Anxiaty or Depression
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Conclusions from application

* Not much difference across methods
* Amount of measurement error also doesn’t seem to matter
much
« Maybe because lots of other covariates being used?
» Should treat these as illustrative, not as definitive substantive
conclusions
+ Using a subset of the data (those with maternal and

adolescent report)
« Complex survey design not incorporated into analysis
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Simulation-Extrapolation (SIM-EX); Lenis et al. (2016)

* Involves adding additional measurement error to the data,
estimating effects given increasing amounts of measurement
error, and then extrapolating back to 0 measurement error

+ Explored a mean-reverting measurement error structure:

Wi = Xi + m[Xi — E(X)] + o€
+ Examine asymptotics of doubly robust treatment effect

estimator that uses SIM-EX to adjust for the measurement
error

+ Simulations (inc. based on real data) show good performance

+ Also see McCaffrey and Lockwood (2014) for classical
measurement error case




Bayesian model (Hong, Rudolph, and Stuart, 2017)

* More complicated measurement error structures may involve
differential measurement error

* e.g., measurement error depends on another variables (inc.
possibly the treatment indicator!)
» Develop a Bayesian model with parameters that allow for
differential measurement error (both location and/or scale)
« WX ~ N(X +~A, o2 (1 +6A)?)

w|x,a=0

+ Simulations (and intuition) show this measurement error
structure can be particularly problematic!




+ A particular complication is that there is often limited data on
the measurement error parameters; may involve
non-identified parameters

+ Consider two approaches:

+ Joint Bayesian model estimating propensity score and
outcome models together

+ Two step approach that first generates posterior draws of X,
and then uses those in outcome model

+ Find that bias can be quite large if differential location across
groups

» Heteroskedasticity doesn’t matter as much

 Prior can matter a lot; need to specify carefully

« If X'is a weak predictor of outcome, naive approach fine

« If X is a strong predictor of outcome, joint Bayesian approach
best (although potentially controversial)
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Sensitivity analysis approach (Rudolph and Stuart, in
press)

+ Can treat the measurement error explicitly as an unobserved
confounder, use strategies for unobserved confounding

» Examine use of established approaches for unobserved
confounding in non-experimental studies, adapt for
measurement error

« Examines classical and differential measurement error

+ Find good performance of bias formulas (VanderWeele and
Arah) or a version of propensity score calibration that uses
weighted least squares

+ (Standard propensity score calibration doesn’t work well
because of strong assumption)

+ Standard Rosenbaum sensitivity analysis approach does not
work well here; hard to interpret the needed parameters and
only appropriate for matching
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Further directions

* More investigation of when measurement error matters

+ May not be a lot of problem if classical error, and not a super
strong confounder
+ But differential measurement error can cause a lot of problems

+ Comparison of methods

 Further investigation of consequences of model
misspecification or violation of assumptions

+ What if validation sample not available?

« What if the validation sample is not representative of the main
sample; adjust for that?

+ Does the propensity score approach itself matter?
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Conclusions

* Measurement error common and a potentially important
concern in propensity score methods

+ MI-EC and other strategies can be an effective strategy for
handling measurement error in the context of propensity score
analyses

+ One limitation of some of them is need to include Y in the
imputation procedure; may violate the clean separation of
“design" and “analysis” that is one of the key benefits of
propensity score methods

* Many more questions to be answered!
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