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Introduction

In practical survival analysis, the event time and censoring
time are sometimes correlated

In this talk, we discuss semi-parametric Cox model fitting
when dependent censoring presents

Particularly, we discuss how to perform likelihood or penalized
likelihood estimation of the model parameters, including
(i) regression coefficients; and
(ii) the baseline hazard

We adopt copulas to describe the dependence
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Introduction

Dependence can be modeled using copula or frailty

Two existing copula-based methods:

Huang and Zhang (2008, Biometrics) adopted a
self-consistent estimator together with partial likelihood

They used a computational expensive bootstrap method to
estimate the standard errors

Chen (2010, JRSSB) used the maximum likelihood (ML)
method and developed consistency and asymptotic properties
of the estimators

Chen used a built-in MATLAB optimizer for constrained
optimization which may be inefficient when the number of
constraints is large

Both methods do not provide smooth baseline hazard
estimate, and thus, the baseline hazard results can be difficult
to interpret
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Dementia example

Data from the PRIME study

A longitudinal study followed 970 patients, with either
dementia or mild cognitive impairment in Australia

Interested in identifying predictors for time to
institutionalization

Patients were assessed annually with additional visits at 3 and
6 months

Predictors: age, sex, education level, living alone, dementia
type, baseline cognition ability (MMSE), baseline function
ability (SMAF), baseline neuropsychiatric symptoms (total
NPI), baseline dementia severity (CDR), baseline care-giver
burden (ZBI), medication types, changes in cognition ability,
function ability, neuropsychiatric symptoms, at 3 months,
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Dementia example

583 patients with complete data

Among them
- 156 patients (26.8%) were institutionalized during the study;
- 146 (25.0%) withdrew before the 3-year period; and
- 281 (48.2%) not institutionalized after full 3-year

In Brodaty et al (2014) initial analyses assumed independent
censoring

Patients withdrew from the studies appeared more likely to be
institutionalized than the patients remained in the studies
(e.g. older, more severe dementia, etc)

Wish to develop Cox model fitting methods allowing both
dependent and independent censorings
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Copulas

Let T = event time; C = dependent censoring time

Dependence between T and C is captured via a copula
function

Let K (a, b;α) be a copula function
- where α is the association parameter; and
- it can be converted to τ = Kendall’s rank corr coef

At time t, the joint survival function of T and C is modeled by

ST ,C (t, t) = Pr(T > t,C > t) = K (ST (t), SC (t);α)

where ST (t) and SC (t) are respectively marginal survival
functions of T and C
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Copulas

we consider the Archimedean copulas

For a, b ∈ [0, 1], copula function K adopts

K (a, b;α) = φ−1(φ(a;α) + φ(b;α))

where φ ≥ 0 is called the generator of K

φ(w) must satisfy
(i) φ(1) = 0; and
(ii) φ(w): convex and decreasing
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Copulas

Some examples of Archimedean copulas

(i) Independent copula K (a, b) = ab

(ii) Clayton copula: φ(a) = a−1 − 1 for α > 1

(iii) Gumbel-Hougaard copula: φ(a) = (− log a)α for α > 1

(iv) Frank copula: φ(a) = log (eαa−1)
(eα−1) where −∞ < α <∞

How to generate dependent survival and censoring times in R?

Use the Frank copula as an example

Firstly, (U,V ) is obtained by R function “frankCopula”

Then, (t, c) are generated by t = S−1
T (U), c = S−1

C (V )
(inversion method)
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Copula based likelihood

Let Ti = event time for individual i , where i = 1, . . . , n

We consider the case where some right censoring times are
dependent on their associated event times

Observed survival time: Xi = min(Ti ,Ci ,Ai ), where
Ci = dependent right censoring time and
Ai = independent right censoring time

Individual i has a record (Xi ,∆iT ,∆iC ,Z
T
i ), where

∆iT = event indicator
∆iC = dependent censoring indicator
Zi = a vector of p covariate values

Assume Zi is not a function of time t

Let (xi , δiT , δiC ) be observed value of (Xi ,∆iT ,∆iC )
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Copula based likelihood

Proportional hazards models for T and C :

λT (x |Zi ) = λ0T (x)eZiβ

λC (x |Zi ) = λ0C (x)eZiφ

where
β, φ are regression coefficient vectors, and
λ0T (x), λ0C (x) are baseline hazard functions (nonparametric)

These are marginal hazard functions

Require λ0T (x) ≥ 0 and λ0C (x) ≥ 0

Main interest is in estimating β and λ0T (x)

But estimation of φ and λ0C (x) are unavoidable
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Copula based likelihood

Let K1(a, b) = ∂K(a,b)
∂a , K2(a, b) = ∂K(a,b)

∂b

The likelihood based on the observations is

L =
n∏

i=1

LδiTiT LδiCiC L1−δiT−δiC
iA

where
LiT = fT (xi )K1(ST (xi ), SC (xi ))SA(xi )
LiC = fC (xi )K2(ST (xi ),SC (xi ))SA(xi )
LiA = fA(xi )K (ST (xi ),SC (xi ))

Here ST , SC and SA are survival functions of T , C and A
respectively

Note that fA and SA are not related to parameters of interest
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Copula based likelihood

The log likelihood is

l =
n∑

i=1

{δiT liT + δiC liC + (1− δiT − δiC )liA}

where

liT = log λ0T (xi ) + Z iβ − ΛT (xi ) + logK1(e−ΛT (xi ), e−ΛC (xi ))

liC = log λ0C (xi ) + Z iφ− ΛC (xi ) + logK2(e−ΛT (xi ), e−ΛC (xi ))

liA = logK (e−ΛT (xi ), e−ΛC (xi ))

ΛT (xi ) = Λ0T (xi )e
Z iβ and ΛC (xi ) = Λ0C (xi )e

Z iφ
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Copula based likelihood

Estimating λ0T (t) and λ0C (t) are ill-conditioned as they are
infinite dimensional parameters

Approximations:

λ0T (t) =
m∑

u=1

θuψu(t)

λ0C (t) =
m∑

u=1

γuψu(t)

ψu(t) ≥ 0 are basis functions; they can be
(a) indicator functions ⇒ piecewise const λ0T (t) and λ0C (t));
(b) M-splines;
(c) normal density functions; etc



Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion

Copula based likelihood

Estimating λ0T (t) and λ0C (t) are ill-conditioned as they are
infinite dimensional parameters

Approximations:

λ0T (t) =
m∑

u=1

θuψu(t)

λ0C (t) =
m∑

u=1

γuψu(t)

ψu(t) ≥ 0 are basis functions; they can be
(a) indicator functions ⇒ piecewise const λ0T (t) and λ0C (t));
(b) M-splines;
(c) normal density functions; etc



Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion

Penalized likelihood estimation

Let θ and γ be respectively vectors for θu and γu

Constrained MPL estimation for η = (βT ,φT ,θT ,γT )T :

η̂ = argmax
θ≥0,γ≥0

{Φ(η) = l(η)− h1J(θ)− h2J(γ)}

where h1, h2 ≥ 0 are smoothing parameters

J(θ) and J(γ) are penalty functions

We adopt roughness penalties:

J(θ) =

∫
t
λ′′0T (x)2dx = θTRθ

J(γ) =

∫
t
λ′′0C (x)2dx = γTRγ
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Penalized likelihood estimation

A constrained optimization problem

Why penalty?
(i) to smooth λ0T (t) and λ0C (t);
(ii) to make the number and location of knots for basis
functions less important

Can we use transformation for θu, γu ≥ 0? e.g. θu = α2
u?

Be careful! Transformations can change a concave function
into a function with multiple maxima!
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Penalized likelihood estimation

We developed an alternating algorithm; for each iteration:
(i) update β and φ, then
(ii) update θ and γ

Let η1 = (βT ,φT )T and η2 = (θT ,γT )T

Hence, η = (ηT
1 ,η

T
2 )T

KKT conditions:

∂Φ

∂βj
= 0 and

∂Φ

∂φj
= 0,

∂Φ

∂θu
= 0 if θu > 0 and

∂Φ

∂θu
< 0 if θu = 0

∂Φ

∂γu
= 0 if γu > 0 and

∂Φ

∂γu
< 0 if γu = 0

for j = 1, . . . , p and u = 1, . . . ,m
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Penalized likelihood estimation

Let η(k) be the estimate of η at iteration k

At iter. k + 1, first update η1 by Newton (or Gauss-Newton):

η
(k+1)
1 = η

(k)
1 + ω

(k)
1 S

(k)
1

∂Φ(η
(k)
1 ,η

(k)
2 )

∂η1

Then update η2 by the MI algorithm:

η
(k+1)
2 = η

(k)
2 + ω

(k)
2 S

(k)
2

∂Φ(η
(k+1)
1 ,η

(k)
2 )

∂η2

where
S

(k)
2 = diag(S

(k)
21 ,S

(k)
22 )

ω
(k)
1 and ω

(k)
2 are line search step sizes assuring

Φ(η
(k+1)
1 ,η

(k+1)
2 ) ≥ Φ(η

(k+1)
1 ,η

(k)
2 ) ≥ Φ(η

(k)
1 ,η

(k)
2 )
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Penalized likelihood estimation

The MI algorithm is very efficient when m is large

It is easy to implement; only demands the first derivative

No need to solve a difficult linear system in each iteration

Our experience shows it performs well and generally has a
good convergence speed

The rational of this algorithm is that it solves the KKT
conditions efficiently

Its convergence properties have been investigated in Chan and
Ma (2012) (IEEE Trans. Image Processing)
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Asymptotic results

Let ξ0 = (β0,φ0, λ
0
0T (t), λ0

0C (t)) be true parameters, and

ξ̂ = (β̂, φ̂, λ̂0T (t), λ̂0C (t)) be MPL estimates.

Let µ1n = h1n/n, µ2n = h2n/n

Theorem

Assume m = nv where 0 < v < 1, and µ1n and µ2n → 0 as
n→∞ Assume λ0T (x) and λ0C (x) have up to r ≥ 1 derivatives.
Then, under certain conditions and when n→∞

1 ‖β̂ − β0‖2 → 0 (a.s.) and ‖φ̂− φ0‖2 → 0(a.s.).

2 supt∈[x(1),x(n)] |λ̂0T (t)− λ0
0T (t)| → 0 (a.s.) and

supt∈[x(1),x(n)] |φ̂0T (t)− φ0
0T (t)| → 0 (a.s).

The results on λ0
0T (t) and λ0

0C (t) are nonparametric
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Asymptotic results

Asymptotics useful for inferences are obtained with fixed m

Need to consider θu = 0 and γu = 0; boundary values will
invalid inv(-Hessian) as covariance!

Assume: q and r active constraints for θ and γ respectively

Let U[2(m+p)−q−r ]×[2(m+p)] be matrix to indicate active
constraints

Let G0(η) = −n−1Eη0
∂2l(η)/∂η∂ηT

Let G̃0(η)−1 = U(UTG0(η)U)−1UT
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Asymptotic results

Let η0 be the true η corresponding to the fixed m

Theorem

Assume m is fixed. Assume µ1n and µ2n are o(n−1/2). Then
1 The MPL estimator η̂ is consistent for η0 and,

2 the distribution of
√
n(η̂ − η0) converges, when n→∞, to

N(02(p+m)×1, G̃0(η0)−1).
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Simulations

Used 2 covariates: Z1 ∼ Bernoulli(0.5) and Z2 ∼ U(-10, 10)

Marginal hazards for T and C :

λT (t) = λ0T (t)exp(−0.5Z1 + 0.1Z2)

λC (t) = λ0C (t)exp(0.3Z1 + 0.2Z2)

where λ0C (t) = 1/5 and λ0T (t) = 2t/λ2
t

The simulation involved both dependent and independent
censoring

Distribution for the independent censoring time was U(0, 10)

Random samples generated using the Frank copula

We used Kendall’s τ = 0.8 and τ = 0.3
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Let
πt = proportion of events
πc = proportion of dependent censoring

For τ = 0.8, λt = 2⇒ {πt = 46%, πc = 35%};
for τ = 0.8, λt = 3.5⇒ {πt = 22%, πc = 48%}
For τ = 0.3, λt = 2⇒ {πt = 47%, πc = 35%}
For each simulated data set, we computed the MPL or ML
estimates with an assumed τ (denoted by τ̃)

λ0T (t) and λ0C (t) were approximated by piecewise constant
functions (indicator basis)

We applied a single smoothing parameter to all replication
samples
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Based on a random selected sample, m chosen by minimizing
AIC; each bin contained approximately an equal number of
observations

Given an m, fixed h2 = 0 and selected h1 by maximizing the
approximate CV criterion

We used N = 500 replication samples in the simulation
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Dementia data analysis

We analyzed the data by assuming a Frank copula model, and

performed a sensitivity analysis, i.e. we fit the model
repeatedly using Kendall’s τ = 0, 0.2, 0.5, 0.8

Results based on Clayton or Gumbel copulas are similar

Adopted equal number of observations in each bin

Used piecewise constant function approximating λ0T (t)

AIC gives m = 26 regardless of τ

For τ = 0, 0.2, 0.5, 0.8
optimal h1 = 1.2× 105, 105, 8× 104, 3× 104
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Conclusions

We developed a novel estimation method for Cox proportional
hazard models under dependent censoring using copulas and
penalized likelihood

It can provide quality MPL estimates if the selected copula
can reasonably correctly model dependence between the
failure and censoring times

An incorrect copula has less effect than incorrect τ

The MPL estimate of baseline hazard usually offers smaller
MSE, as well as much improved interpretations, over its ML
counterpart

As true τ is unknown, recommend to conduct a sensitivity
analysis for a range of τ values
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