Proportional hazards model estimation under dependent censoring using copulas and penalized likelihood - an application to a dementia dataset

asymptotics

Copulas

Jun Ma

Department of Statistics, Macquarie University Australia

(Joint work with Dr Kenny Xu, Dr Michael Connors and Prof Henry Brodaty)

ViCBiostat, Melbourne

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

- Introduction
- Oementia example
- Opulas
- Opula based likelihood
- Penalized likelihood estimation
- Asymptotic results
- Simulations
- Oementia data analysis
- Onclusions

- In practical survival analysis, the event time and censoring time are sometimes correlated
- In this talk, we discuss semi-parametric Cox model fitting when dependent censoring presents
- Particularly, we discuss how to perform likelihood or penalized likelihood estimation of the model parameters, including

 (i) regression coefficients; and
 (ii) the baseline based

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

- (II) the baseline hazard
- We adopt copulas to describe the dependence

- In practical survival analysis, the event time and censoring time are sometimes correlated
- In this talk, we discuss semi-parametric Cox model fitting when dependent censoring presents
- Particularly, we discuss how to perform likelihood or penalized likelihood estimation of the model parameters, including

 (i) regression coefficients; and
 (ii) the baseline hazard

<ロ> <同> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日> <日</p>

• We adopt copulas to describe the dependence

- In practical survival analysis, the event time and censoring time are sometimes correlated
- In this talk, we discuss semi-parametric Cox model fitting when dependent censoring presents
- Particularly, we discuss how to perform likelihood or penalized likelihood estimation of the model parameters, including

 (i) regression coefficients; and
 (ii) the baseline hazard

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We adopt copulas to describe the dependence

- In practical survival analysis, the event time and censoring time are sometimes correlated
- In this talk, we discuss semi-parametric Cox model fitting when dependent censoring presents
- Particularly, we discuss how to perform likelihood or penalized likelihood estimation of the model parameters, including

 (i) regression coefficients; and
 (ii) the baseline based

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- (ii) the baseline hazard
- We adopt copulas to describe the dependence

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

- Dependence can be modeled using copula or frailty
- Two existing copula-based methods:
- Huang and Zhang (2008, Biometrics) adopted a self-consistent estimator together with partial likelihood
- They used a computational expensive bootstrap method to estimate the standard errors
- Chen (2010, JRSSB) used the maximum likelihood (ML) method and developed consistency and asymptotic properties of the estimators
- Chen used a built-in MATLAB optimizer for constrained optimization which may be inefficient when the number of constraints is large
- Both methods do not provide smooth baseline hazard estimate, and thus, the baseline hazard results can be difficult to interpret

• Data from the PRIME study

- A longitudinal study followed 970 patients, with either dementia or mild cognitive impairment in Australia
- Interested in identifying predictors for time to institutionalization
- Patients were assessed annually with additional visits at 3 and 6 months
- Predictors: age, sex, education level, living alone, dementia type, baseline cognition ability (MMSE), baseline function ability (SMAF), baseline neuropsychiatric symptoms (total NPI), baseline dementia severity (CDR), baseline care-giver burden (ZBI), medication types, changes in cognition ability, function ability, neuropsychiatric symptoms, at 3 months,

- Data from the PRIME study
- A longitudinal study followed 970 patients, with either dementia or mild cognitive impairment in Australia
- Interested in identifying predictors for time to institutionalization
- Patients were assessed annually with additional visits at 3 and 6 months
- Predictors: age, sex, education level, living alone, dementia type, baseline cognition ability (MMSE), baseline function ability (SMAF), baseline neuropsychiatric symptoms (total NPI), baseline dementia severity (CDR), baseline care-giver burden (ZBI), medication types, changes in cognition ability, function ability, neuropsychiatric symptoms, at 3 months,

- Data from the PRIME study
- A longitudinal study followed 970 patients, with either dementia or mild cognitive impairment in Australia
- Interested in identifying predictors for time to institutionalization
- Patients were assessed annually with additional visits at 3 and 6 months
- Predictors: age, sex, education level, living alone, dementia type, baseline cognition ability (MMSE), baseline function ability (SMAF), baseline neuropsychiatric symptoms (total NPI), baseline dementia severity (CDR), baseline care-giver burden (ZBI), medication types, changes in cognition ability, function ability, neuropsychiatric symptoms, at 3 months,

- Data from the PRIME study
- A longitudinal study followed 970 patients, with either dementia or mild cognitive impairment in Australia
- Interested in identifying predictors for time to institutionalization
- Patients were assessed annually with additional visits at 3 and 6 months
- Predictors: age, sex, education level, living alone, dementia type, baseline cognition ability (MMSE), baseline function ability (SMAF), baseline neuropsychiatric symptoms (total NPI), baseline dementia severity (CDR), baseline care-giver burden (ZBI), medication types, changes in cognition ability, function ability, neuropsychiatric symptoms, at 3 months,

- Data from the PRIME study
- A longitudinal study followed 970 patients, with either dementia or mild cognitive impairment in Australia
- Interested in identifying predictors for time to institutionalization
- Patients were assessed annually with additional visits at 3 and 6 months
- Predictors: age, sex, education level, living alone, dementia type, baseline cognition ability (MMSE), baseline function ability (SMAF), baseline neuropsychiatric symptoms (total NPI), baseline dementia severity (CDR), baseline care-giver burden (ZBI), medication types, changes in cognition ability, function ability, neuropsychiatric symptoms, at 3 months,

• 583 patients with complete data

- Among them
 - 156 patients (26.8%) were institutionalized during the study;
 - 146 (25.0%) withdrew before the 3-year period; and
 - 281 (48.2%) not institutionalized after full 3-year
- In Brodaty et al (2014) initial analyses assumed independent censoring
- Patients withdrew from the studies appeared more likely to be institutionalized than the patients remained in the studies (e.g. older, more severe dementia, etc)
- Wish to develop Cox model fitting methods allowing both dependent and independent censorings

- 583 patients with complete data
- Among them
 - 156 patients (26.8%) were institutionalized during the study;
 - 146 (25.0%) withdrew before the 3-year period; and
 - 281 (48.2%) not institutionalized after full 3-year
- In Brodaty et al (2014) initial analyses assumed independent censoring
- Patients withdrew from the studies appeared more likely to be institutionalized than the patients remained in the studies (e.g. older, more severe dementia, etc)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• Wish to develop Cox model fitting methods allowing both dependent and independent censorings

- 583 patients with complete data
- Among them
 - 156 patients (26.8%) were institutionalized during the study;
 - 146 (25.0%) withdrew before the 3-year period; and
 - 281 (48.2%) not institutionalized after full 3-year
- In Brodaty et al (2014) initial analyses assumed independent censoring
- Patients withdrew from the studies appeared more likely to be institutionalized than the patients remained in the studies (e.g. older, more severe dementia, etc)
- Wish to develop Cox model fitting methods allowing both dependent and independent censorings

- 583 patients with complete data
- Among them
 - 156 patients (26.8%) were institutionalized during the study;
 - 146 (25.0%) withdrew before the 3-year period; and
 - 281 (48.2%) not institutionalized after full 3-year
- In Brodaty et al (2014) initial analyses assumed independent censoring
- Patients withdrew from the studies appeared more likely to be institutionalized than the patients remained in the studies (e.g. older, more severe dementia, etc)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

• Wish to develop Cox model fitting methods allowing both dependent and independent censorings

- 583 patients with complete data
- Among them
 - 156 patients (26.8%) were institutionalized during the study;
 - 146 (25.0%) withdrew before the 3-year period; and
 - 281 (48.2%) not institutionalized after full 3-year
- In Brodaty et al (2014) initial analyses assumed independent censoring
- Patients withdrew from the studies appeared more likely to be institutionalized than the patients remained in the studies (e.g. older, more severe dementia, etc)
- Wish to develop Cox model fitting methods allowing both dependent and independent censorings

• Let T = event time; C = dependent censoring time

- Dependence between *T* and *C* is captured via a copula function
- Let $K(a, b; \alpha)$ be a copula function
 - where lpha is the association parameter; and
 - it can be converted to au = Kendall's rank corr coef
- At time t, the joint survival function of T and C is modeled by

$$S_{T,C}(t,t) = Pr(T > t, C > t) = K(S_T(t), S_C(t); \alpha)$$

- Let T = event time; C = dependent censoring time
- Dependence between *T* and *C* is captured via a copula function
- Let $K(a, b; \alpha)$ be a copula function
 - where lpha is the association parameter; and
 - it can be converted to au = Kendall's rank corr coef
- At time t, the joint survival function of T and C is modeled by

$$S_{T,C}(t,t) = Pr(T > t, C > t) = K(S_T(t), S_C(t); \alpha)$$

- Let T = event time; C = dependent censoring time
- Dependence between *T* and *C* is captured via a copula function
- Let $K(a, b; \alpha)$ be a copula function
 - where α is the association parameter; and
 - it can be converted to au = Kendall's rank corr coef
- At time t, the joint survival function of T and C is modeled by

 $S_{T,C}(t,t) = Pr(T > t, C > t) = K(S_T(t), S_C(t); \alpha)$

- Let T = event time; C = dependent censoring time
- Dependence between *T* and *C* is captured via a copula function
- Let $K(a, b; \alpha)$ be a copula function
 - where α is the association parameter; and
 - it can be converted to au = Kendall's rank corr coef
- At time t, the joint survival function of T and C is modeled by

$$S_{T,C}(t,t) = Pr(T > t, C > t) = K(S_T(t), S_C(t); \alpha)$$

• we consider the Archimedean copulas

• For $a, b \in [0, 1]$, copula function K adopts

$$K(a, b; \alpha) = \phi^{-1}(\phi(a; \alpha) + \phi(b; \alpha))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\phi \geq 0$ is called the generator of K

• $\phi(w)$ must satisfy (i) $\phi(1) = 0$; and (ii) $\phi(w)$: convex and decreasing

- we consider the Archimedean copulas
- For $a, b \in [0, 1]$, copula function K adopts

$$K(\mathbf{a}, \mathbf{b}; \alpha) = \phi^{-1}(\phi(\mathbf{a}; \alpha) + \phi(\mathbf{b}; \alpha))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\phi \ge 0$ is called the generator of K

φ(w) must satisfy
 (i) φ(1) = 0; and
 (ii) φ(w): convex and decreasing

- we consider the Archimedean copulas
- For $a, b \in [0, 1]$, copula function K adopts

$$K(\mathbf{a}, \mathbf{b}; \alpha) = \phi^{-1}(\phi(\mathbf{a}; \alpha) + \phi(\mathbf{b}; \alpha))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\phi \ge 0$ is called the generator of K

• $\phi(w)$ must satisfy (i) $\phi(1) = 0$; and (ii) $\phi(w)$: convex and decreasing

- Some examples of Archimedean copulas
 - (i) Independent copula K(a, b) = ab
 - (ii) Clayton copula: $\phi(a) = a^{-1} 1$ for $\alpha > 1$
 - (iii) Gumbel-Hougaard copula: $\phi(a) = (-\log a)^{lpha}$ for lpha > 1
 - (iv) Frank copula: $\phi(a) = \log \frac{(e^{\alpha a} 1)}{(e^{\alpha} 1)}$ where $-\infty < \alpha < \infty$
- How to generate dependent survival and censoring times in R?

- Use the Frank copula as an example
- Firstly, (U, V) is obtained by R function "frankCopula"
- Then, (t, c) are generated by $t = S_T^{-1}(U)$, $c = S_C^{-1}(V)$ (inversion method)

- Some examples of Archimedean copulas
 - (i) Independent copula K(a, b) = ab
 - (ii) Clayton copula: $\phi(a) = a^{-1} 1$ for $\alpha > 1$
 - (iii) Gumbel-Hougaard copula: $\phi(a) = (-\log a)^{lpha}$ for lpha > 1
 - (iv) Frank copula: $\phi(a) = \log \frac{(e^{\alpha a} 1)}{(e^{\alpha} 1)}$ where $-\infty < \alpha < \infty$
- How to generate dependent survival and censoring times in R?

- Use the Frank copula as an example
- Firstly, (U, V) is obtained by R function "frankCopula"
- Then, (t, c) are generated by $t = S_T^{-1}(U)$, $c = S_C^{-1}(V)$ (inversion method)

- Some examples of Archimedean copulas
 - (i) Independent copula K(a, b) = ab
 - (ii) Clayton copula: $\phi(a) = a^{-1} 1$ for $\alpha > 1$
 - (iii) Gumbel-Hougaard copula: $\phi(a) = (-\log a)^{lpha}$ for lpha > 1
 - (iv) Frank copula: $\phi(a) = \log \frac{(e^{\alpha a} 1)}{(e^{\alpha} 1)}$ where $-\infty < \alpha < \infty$
- How to generate dependent survival and censoring times in R?
- Use the Frank copula as an example
- Firstly, (U, V) is obtained by R function "frankCopula"
- Then, (t, c) are generated by $t = S_T^{-1}(U)$, $c = S_C^{-1}(V)$ (inversion method)

- Some examples of Archimedean copulas
 - (i) Independent copula K(a, b) = ab
 - (ii) Clayton copula: $\phi(a) = a^{-1} 1$ for $\alpha > 1$
 - (iii) Gumbel-Hougaard copula: $\phi(a) = (-\log a)^{lpha}$ for lpha > 1

(iv) Frank copula: $\phi(a) = \log \frac{(e^{\alpha a} - 1)}{(e^{\alpha} - 1)}$ where $-\infty < \alpha < \infty$

• How to generate dependent survival and censoring times in R?

- Use the Frank copula as an example
- Firstly, (U, V) is obtained by R function "frankCopula"
- Then, (t, c) are generated by $t = S_T^{-1}(U)$, $c = S_C^{-1}(V)$ (inversion method)

- Some examples of Archimedean copulas
 - (i) Independent copula K(a, b) = ab
 - (ii) Clayton copula: $\phi(a) = a^{-1} 1$ for $\alpha > 1$
 - (iii) Gumbel-Hougaard copula: $\phi(a) = (-\log a)^{lpha}$ for lpha > 1

(iv) Frank copula: $\phi(a) = \log \frac{(e^{\alpha a} - 1)}{(e^{\alpha} - 1)}$ where $-\infty < \alpha < \infty$

• How to generate dependent survival and censoring times in R?

- Use the Frank copula as an example
- Firstly, (U, V) is obtained by R function "frankCopula"
- Then, (t, c) are generated by $t = S_T^{-1}(U)$, $c = S_C^{-1}(V)$ (inversion method)

Copula based likelihood

- Let T_i = event time for individual *i*, where i = 1, ..., n
- We consider the case where some right censoring times are dependent on their associated event times

asymptotics

- Observed survival time: X_i = min(T_i, C_i, A_i), where C_i = dependent right censoring time and A_i = independent right censoring time
- Individual *i* has a record $(X_i, \Delta_{iT}, \Delta_{iC}, \mathbf{Z}_i^T)$, where Δ_{iT} = event indicator
 - $\Delta_{iC}={\sf dependent}$ censoring indicator

Likelihood

- $Z_i = a$ vector of p covariate values
- Assume **Z**_i is not a function of time t
- Let $(x_i, \delta_{iT}, \delta_{iC})$ be observed value of $(X_i, \Delta_{iT}, \Delta_{iC})$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ
- Let T_i = event time for individual i, where i = 1, ..., n
- We consider the case where some right censoring times are dependent on their associated event times

asymptotics

- Observed survival time: X_i = min(T_i, C_i, A_i), where C_i = dependent right censoring time and A_i = independent right censoring time
- Individual *i* has a record $(X_i, \Delta_{iT}, \Delta_{iC}, \mathbf{Z}_i^T)$, where $\Delta_{iT} =$ event indicator
 - $\Delta_{iC}={\sf dependent}$ censoring indicator

Likelihood

- $Z_i = a$ vector of p covariate values
- Assume **Z**_i is not a function of time t
- Let $(x_i, \delta_{iT}, \delta_{iC})$ be observed value of $(X_i, \Delta_{iT}, \Delta_{iC})$

- Let T_i = event time for individual *i*, where i = 1, ..., n
- We consider the case where some right censoring times are dependent on their associated event times

asymptotics

- Observed survival time: X_i = min(T_i, C_i, A_i), where C_i = dependent right censoring time and A_i = independent right censoring time
- Individual *i* has a record $(X_i, \Delta_{iT}, \Delta_{iC}, \mathbb{Z}_i^T)$, where $\Delta_{iT} = \text{event indicator}$
 - $\Delta_{iC} =$ dependent censoring indicato

Likelihood

- $Z_i = a$ vector of p covariate values
- Assume **Z**_i is not a function of time t
- Let $(x_i, \delta_{iT}, \delta_{iC})$ be observed value of $(X_i, \Delta_{iT}, \Delta_{iC})$

- Let T_i = event time for individual *i*, where i = 1, ..., n
- We consider the case where some right censoring times are dependent on their associated event times
- Observed survival time: X_i = min(T_i, C_i, A_i), where C_i = dependent right censoring time and A_i = independent right censoring time
- Individual *i* has a record $(X_i, \Delta_{iT}, \Delta_{iC}, \mathbf{Z}_i^T)$, where
 - Δ_{iT} = event indicator
 - Δ_{iC} = dependent censoring indicator

Likelihood

- \mathbf{Z}_i = a vector of p covariate values
- Assume Z_i is not a function of time t
- Let $(x_i, \delta_{iT}, \delta_{iC})$ be observed value of $(X_i, \Delta_{iT}, \Delta_{iC})$

- Let T_i = event time for individual *i*, where i = 1, ..., n
- We consider the case where some right censoring times are dependent on their associated event times

asymptotics

- Observed survival time: X_i = min(T_i, C_i, A_i), where Ci = dependent right censoring time and A_i = independent right censoring time
- Individual *i* has a record $(X_i, \Delta_{iT}, \Delta_{iC}, \mathbf{Z}_i^T)$, where Δ_{iT} = event indicator
 - Δ_{iC} = dependent censoring indicator

Likelihood

- \mathbf{Z}_i = a vector of p covariate values
- Assume **Z**_i is not a function of time t
- Let $(x_i, \delta_{iT}, \delta_{iC})$ be observed value of $(X_i, \Delta_{iT}, \Delta_{iC})$

- Let T_i = event time for individual *i*, where i = 1, ..., n
- We consider the case where some right censoring times are dependent on their associated event times
- Observed survival time: X_i = min(T_i, C_i, A_i), where C_i = dependent right censoring time and A_i = independent right censoring time
- Individual *i* has a record $(X_i, \Delta_{iT}, \Delta_{iC}, \mathbf{Z}_i^T)$, where Δ_{iT} = event indicator
 - Δ_{iC} = dependent censoring indicator

Likelihood

- \mathbf{Z}_i = a vector of p covariate values
- Assume **Z**_i is not a function of time t
- Let (x_i, δ_{iT}, δ_{iC}) be observed value of (X_i, Δ_{iT}, Δ_{iC})

• Proportional hazards models for T and C:

$$\lambda_{T}(x|\mathbf{Z}_{i}) = \lambda_{0T}(x)e^{\mathbf{Z}_{i}\beta}$$
$$\lambda_{C}(x|\mathbf{Z}_{i}) = \lambda_{0C}(x)e^{\mathbf{Z}_{i}\phi}$$

where

 β , ϕ are regression coefficient vectors, and $\lambda_{0T}(x)$, $\lambda_{0C}(x)$ are baseline hazard functions (nonparametric)

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○ ○ ○

- These are marginal hazard functions
- Require $\lambda_{0T}(x) \ge 0$ and $\lambda_{0C}(x) \ge 0$
- Main interest is in estimating β and $\lambda_{0T}(x)$
- But estimation of ϕ and $\lambda_{0C}(x)$ are unavoidable

• Proportional hazards models for T and C:

$$\lambda_{T}(x|\mathbf{Z}_{i}) = \lambda_{0T}(x)e^{\mathbf{Z}_{i}\beta}$$
$$\lambda_{C}(x|\mathbf{Z}_{i}) = \lambda_{0C}(x)e^{\mathbf{Z}_{i}\phi}$$

where

 β , ϕ are regression coefficient vectors, and $\lambda_{0T}(x)$, $\lambda_{0C}(x)$ are baseline hazard functions (nonparametric)

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○ ○ ○

- These are marginal hazard functions
- Require $\lambda_{0T}(x) \ge 0$ and $\lambda_{0C}(x) \ge 0$
- Main interest is in estimating β and $\lambda_{0T}(x)$
- But estimation of ϕ and $\lambda_{0C}(x)$ are unavoidable

• Proportional hazards models for T and C:

$$\lambda_{T}(x|\mathbf{Z}_{i}) = \lambda_{0T}(x)e^{\mathbf{Z}_{i}\beta}$$
$$\lambda_{C}(x|\mathbf{Z}_{i}) = \lambda_{0C}(x)e^{\mathbf{Z}_{i}\phi}$$

where

 β , ϕ are regression coefficient vectors, and $\lambda_{0T}(x)$, $\lambda_{0C}(x)$ are baseline hazard functions (nonparametric)

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○ ○ ○

- These are marginal hazard functions
- Require $\lambda_{0T}(x) \ge 0$ and $\lambda_{0C}(x) \ge 0$
- Main interest is in estimating β and $\lambda_{0T}(x)$
- But estimation of ϕ and $\lambda_{0C}(x)$ are unavoidable

• Proportional hazards models for T and C:

$$\lambda_{T}(x|\mathbf{Z}_{i}) = \lambda_{0T}(x)e^{\mathbf{Z}_{i}\beta}$$
$$\lambda_{C}(x|\mathbf{Z}_{i}) = \lambda_{0C}(x)e^{\mathbf{Z}_{i}\phi}$$

where

 β , ϕ are regression coefficient vectors, and $\lambda_{0T}(x)$, $\lambda_{0C}(x)$ are baseline hazard functions (nonparametric)

- These are marginal hazard functions
- Require $\lambda_{0T}(x) \ge 0$ and $\lambda_{0C}(x) \ge 0$
- Main interest is in estimating β and $\lambda_{0T}(x)$
- But estimation of ϕ and $\lambda_{0C}(x)$ are unavoidable

• Let
$$K_1(a,b) = \frac{\partial K(a,b)}{\partial a}$$
, $K_2(a,b) = \frac{\partial K(a,b)}{\partial b}$

Copulas Likelihood

• The likelihood based on the observations is

$$L = \prod_{i=1}^{n} L_{iT}^{\delta_{iT}} L_{iC}^{\delta_{iC}} L_{iA}^{1-\delta_{iT}-\delta_{iC}}$$

where

$$L_{iT} = f_{T}(x_{i})K_{1}(S_{T}(x_{i}), S_{C}(x_{i}))S_{A}(x_{i})$$

$$L_{iC} = f_{C}(x_{i})K_{2}(S_{T}(x_{i}), S_{C}(x_{i}))S_{A}(x_{i})$$

$$L_{iA} = f_{A}(x_{i})K(S_{T}(x_{i}), S_{C}(x_{i}))$$

Here S_T , S_C and S_A are survival functions of T, C and A respectively

• Note that f_A and S_A are not related to parameters of interest

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Let
$$K_1(a,b) = \frac{\partial K(a,b)}{\partial a}$$
, $K_2(a,b) = \frac{\partial K(a,b)}{\partial b}$

Copulas Likelihood

• The likelihood based on the observations is

$$L = \prod_{i=1}^{n} L_{iT}^{\delta_{iT}} L_{iC}^{\delta_{iC}} L_{iA}^{1-\delta_{iT}-\delta_{iC}}$$

where

$$L_{iT} = f_{T}(x_{i})K_{1}(S_{T}(x_{i}), S_{C}(x_{i}))S_{A}(x_{i})$$

$$L_{iC} = f_{C}(x_{i})K_{2}(S_{T}(x_{i}), S_{C}(x_{i}))S_{A}(x_{i})$$

$$L_{iA} = f_{A}(x_{i})K(S_{T}(x_{i}), S_{C}(x_{i}))$$

Here S_T , S_C and S_A are survival functions of T, C and A respectively

• Note that f_A and S_A are not related to parameters of interest

<ロ> <同> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日> <日</p>

• Let
$$K_1(a,b) = \frac{\partial K(a,b)}{\partial a}$$
, $K_2(a,b) = \frac{\partial K(a,b)}{\partial b}$

Copulas Likelihood

• The likelihood based on the observations is

$$L = \prod_{i=1}^{n} L_{iT}^{\delta_{iT}} L_{iC}^{\delta_{iC}} L_{iA}^{1-\delta_{iT}-\delta_{iC}}$$

asymptotics Simulations Data Analysis

where

$$L_{iT} = f_{T}(x_{i})K_{1}(S_{T}(x_{i}), S_{C}(x_{i}))S_{A}(x_{i})$$

$$L_{iC} = f_{C}(x_{i})K_{2}(S_{T}(x_{i}), S_{C}(x_{i}))S_{A}(x_{i})$$

$$L_{iA} = f_{A}(x_{i})K(S_{T}(x_{i}), S_{C}(x_{i}))$$

Here S_T , S_C and S_A are survival functions of T, C and A respectively

• Note that f_A and S_A are not related to parameters of interest

• The log likelihood is

$$I = \sum_{i=1}^{n} \left\{ \delta_{iT} I_{iT} + \delta_{iC} I_{iC} + (1 - \delta_{iT} - \delta_{iC}) I_{iA} \right\}$$

where

$$I_{iT} = \log \lambda_{0T}(x_i) + \mathbf{Z}_i \boldsymbol{\beta} - \Lambda_T(x_i) + \log K_1(e^{-\Lambda_T(x_i)}, e^{-\Lambda_C(x_i)})$$

$$I_{iC} = \log \lambda_{0C}(x_i) + \mathbf{Z}_i \boldsymbol{\phi} - \Lambda_C(x_i) + \log K_2(e^{-\Lambda_T(x_i)}, e^{-\Lambda_C(x_i)})$$

$$I_{iA} = \log K(e^{-\Lambda_T(x_i)}, e^{-\Lambda_C(x_i)})$$

$$\Lambda_T(x_i) = \Lambda_{0T}(x_i)e^{\mathbf{Z}_i \boldsymbol{\beta}} \text{ and } \Lambda_C(x_i) = \Lambda_{0C}(x_i)e^{\mathbf{Z}_i \boldsymbol{\phi}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うくぐ

- Estimating λ₀τ(t) and λ₀C(t) are ill-conditioned as they are infinite dimensional parameters
- Approximations:

 $\psi_u(t) \ge 0$ are basis functions; they can be (a) indicator functions \Rightarrow piecewise const $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$); (b) M-splines; (c) normal density functions; etc

- Estimating $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$ are ill-conditioned as they are infinite dimensional parameters
- Approximations:

$$\lambda_{0T}(t) = \sum_{u=1}^{m} \theta_{u} \psi_{u}(t)$$
$$\lambda_{0C}(t) = \sum_{u=1}^{m} \gamma_{u} \psi_{u}(t)$$

 $\psi_u(t) \ge 0$ are basis functions; they can be (a) indicator functions \Rightarrow piecewise const $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$); (b) M-splines;

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

(c) normal density functions; etc

Copulas Likelihood

• Let $\boldsymbol{\theta}$ and $\boldsymbol{\gamma}$ be respectively vectors for θ_u and γ_u

• Constrained MPL estimation for $\eta = (\beta^T, \phi^T, \theta^T, \gamma^T)^T$:

MPL

$$\widehat{\eta} = \operatorname*{argmax}_{\theta \ge 0, \gamma \ge 0} \{ \Phi(\eta) = I(\eta) - h_1 J(\theta) - h_2 J(\gamma) \}$$

where $h_1, h_2 \ge 0$ are smoothing parameters

• $J(\theta)$ and $J(\gamma)$ are penalty functions

• We adopt roughness penalties:

$$J(\boldsymbol{\theta}) = \int_{t} \lambda_{0T}''(x)^{2} dx = \boldsymbol{\theta}^{T} \mathbf{R} \boldsymbol{\theta}$$
$$J(\boldsymbol{\gamma}) = \int_{t} \lambda_{0C}''(x)^{2} dx = \boldsymbol{\gamma}^{T} \mathbf{R} \boldsymbol{\gamma}$$

Copulas Likelihood

- Let $\boldsymbol{\theta}$ and $\boldsymbol{\gamma}$ be respectively vectors for θ_u and γ_u
- Constrained MPL estimation for $\eta = (\beta^T, \phi^T, \theta^T, \gamma^T)^T$:

MPL

$$\widehat{\boldsymbol{\eta}} = \operatorname*{argmax}_{\boldsymbol{ heta} \geq 0, \gamma \geq 0} \left\{ \Phi(\boldsymbol{\eta}) = I(\boldsymbol{\eta}) - h_1 J(\boldsymbol{ heta}) - h_2 J(\boldsymbol{\gamma}) \right\}$$

asymptotics

where $h_1, h_2 \ge 0$ are smoothing parameters

- $J(\theta)$ and $J(\gamma)$ are penalty functions
- We adopt roughness penalties:

$$J(\boldsymbol{\theta}) = \int_{t} \lambda_{0T}''(x)^{2} dx = \boldsymbol{\theta}^{T} \mathbf{R} \boldsymbol{\theta}$$
$$J(\boldsymbol{\gamma}) = \int_{t} \lambda_{0C}''(x)^{2} dx = \boldsymbol{\gamma}^{T} \mathbf{R} \boldsymbol{\gamma}$$

Copulas Likelihood

- Let $\boldsymbol{\theta}$ and $\boldsymbol{\gamma}$ be respectively vectors for θ_u and γ_u
- Constrained MPL estimation for $\eta = (\beta^T, \phi^T, \theta^T, \gamma^T)^T$:

MPL

$$\widehat{\boldsymbol{\eta}} = \operatorname*{argmax}_{\boldsymbol{ heta} \geq 0, \gamma \geq 0} \left\{ \Phi(\boldsymbol{\eta}) = I(\boldsymbol{\eta}) - h_1 J(\boldsymbol{ heta}) - h_2 J(\boldsymbol{\gamma}) \right\}$$

asymptotics

where $h_1, h_2 \ge 0$ are smoothing parameters

- $J(\theta)$ and $J(\gamma)$ are penalty functions
- We adopt roughness penalties:

$$J(\boldsymbol{\theta}) = \int_{t} \lambda_{0T}''(x)^{2} dx = \boldsymbol{\theta}^{T} \mathbf{R} \boldsymbol{\theta}$$
$$J(\boldsymbol{\gamma}) = \int_{t} \lambda_{0C}''(x)^{2} dx = \boldsymbol{\gamma}^{T} \mathbf{R} \boldsymbol{\gamma}$$

Copulas Likelihood

- Let $\boldsymbol{\theta}$ and $\boldsymbol{\gamma}$ be respectively vectors for θ_u and γ_u
- Constrained MPL estimation for $\eta = (\beta^T, \phi^T, \theta^T, \gamma^T)^T$:

MPL

$$\widehat{\boldsymbol{\eta}} = \operatorname*{argmax}_{\boldsymbol{ heta} \geq 0, \gamma \geq 0} \left\{ \Phi(\boldsymbol{\eta}) = I(\boldsymbol{\eta}) - h_1 J(\boldsymbol{ heta}) - h_2 J(\boldsymbol{\gamma}) \right\}$$

asymptotics

where $h_1, h_2 \ge 0$ are smoothing parameters

- $J(\theta)$ and $J(\gamma)$ are penalty functions
- We adopt roughness penalties:

$$J(\boldsymbol{\theta}) = \int_{t} \lambda_{0T}''(x)^{2} dx = \boldsymbol{\theta}^{T} \mathbf{R} \boldsymbol{\theta}$$
$$J(\boldsymbol{\gamma}) = \int_{t} \lambda_{0C}''(x)^{2} dx = \boldsymbol{\gamma}^{T} \mathbf{R} \boldsymbol{\gamma}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()

• A constrained optimization problem

- Why penalty?
 - (i) to smooth $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$;

(ii) to make the number and location of knots for basis functions less important

MPL

- Can we use transformation for $\theta_u, \gamma_u \ge 0$? e.g. $\theta_u = \alpha_u^2$?
- Be careful! Transformations can change a concave function into a function with multiple maxima!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- A constrained optimization problem
- Why penalty?
 - (i) to smooth $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$;

(ii) to make the number and location of knots for basis functions less important

MPL

- Can we use transformation for $\theta_u, \gamma_u \ge 0$? e.g. $\theta_u = \alpha_u^2$?
- Be careful! Transformations can change a concave function into a function with multiple maxima!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()

- A constrained optimization problem
- Why penalty?
 - (i) to smooth $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$;

(ii) to make the number and location of knots for basis functions less important

MPL

- Can we use transformation for $\theta_u, \gamma_u \ge 0$? e.g. $\theta_u = \alpha_u^2$?
- Be careful! Transformations can change a concave function into a function with multiple maxima!

- A constrained optimization problem
- Why penalty?
 - (i) to smooth $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$;

(ii) to make the number and location of knots for basis functions less important

MPL

- Can we use transformation for $\theta_u, \gamma_u \ge 0$? e.g. $\theta_u = \alpha_u^2$?
- Be careful! Transformations can change a concave function into a function with multiple maxima!

We developed an alternating algorithm; for each iteration:
 (i) update β and φ, then
 (ii) update θ and γ

MPL

- Let $\eta_1 = (eta^{ op}, \phi^{ op})^{ op}$ and $\eta_2 = (heta^{ op}, \gamma^{ op})^{ op}$
- Hence, $\boldsymbol{\eta} = (\boldsymbol{\eta}_1^T, \boldsymbol{\eta}_2^T)^T$
- KKT conditions:

$$\frac{\partial \Phi}{\partial \beta_j} = 0 \text{ and } \frac{\partial \Phi}{\partial \phi_j} = 0,$$
$$\frac{\partial \Phi}{\partial \theta_u} = 0 \text{ if } \theta_u > 0 \text{ and } \frac{\partial \Phi}{\partial \theta_u} < 0 \text{ if } \theta_u = 0$$
$$\frac{\partial \Phi}{\partial \gamma_u} = 0 \text{ if } \gamma_u > 0 \text{ and } \frac{\partial \Phi}{\partial \gamma_u} < 0 \text{ if } \gamma_u = 0$$

for j = 1, ..., p and u = 1, ..., m

We developed an alternating algorithm; for each iteration:

update β and φ, then
update θ and γ

Let η₁ = (β^T, φ^T)^T and η₂ = (θ^T, γ^T)^T
Hence, η = (η₁^T, η₂^T)^T

MPL

• KKT conditions:

$$\frac{\partial \Phi}{\partial \beta_j} = 0 \text{ and } \frac{\partial \Phi}{\partial \phi_j} = 0,$$
$$\frac{\partial \Phi}{\partial \theta_u} = 0 \text{ if } \theta_u > 0 \text{ and } \frac{\partial \Phi}{\partial \theta_u} < 0 \text{ if } \theta_u = 0$$
$$\frac{\partial \Phi}{\partial \gamma_u} = 0 \text{ if } \gamma_u > 0 \text{ and } \frac{\partial \Phi}{\partial \gamma_u} < 0 \text{ if } \gamma_u = 0$$

for j = 1, ..., p and u = 1, ..., m

We developed an alternating algorithm; for each iteration:
 (i) update β and φ, then
 (ii) update θ and γ

MPL

- Let $\eta_1 = (\beta^T, \phi^T)^T$ and $\eta_2 = (\theta^T, \gamma^T)^T$
- Hence, $\boldsymbol{\eta} = (\boldsymbol{\eta}_1^{\mathsf{T}}, \boldsymbol{\eta}_2^{\mathsf{T}})^{\mathsf{T}}$
- KKT conditions:

$$\frac{\partial \Phi}{\partial \beta_j} = 0 \text{ and } \frac{\partial \Phi}{\partial \phi_j} = 0,$$
$$\frac{\partial \Phi}{\partial \theta_u} = 0 \text{ if } \theta_u > 0 \text{ and } \frac{\partial \Phi}{\partial \theta_u} < 0 \text{ if } \theta_u = 0$$
$$\frac{\partial \Phi}{\partial \gamma_u} = 0 \text{ if } \gamma_u > 0 \text{ and } \frac{\partial \Phi}{\partial \gamma_u} < 0 \text{ if } \gamma_u = 0$$

for j = 1, ..., p and u = 1, ..., m

Copulas Likelihood

We developed an alternating algorithm; for each iteration:
 (i) update β and φ, then
 (ii) update θ and γ
 (at m = (θ^T + t^T)^T and m = (θ^T + t^T)^T

MPL

asymptotics

- Let $\eta_1 = (\beta^T, \phi^T)^T$ and $\eta_2 = (\theta^T, \gamma^T)^T$
- Hence, $oldsymbol{\eta} = (oldsymbol{\eta}_1^{ op},oldsymbol{\eta}_2^{ op})^{ op}$
- KKT conditions:

$$\frac{\partial \Phi}{\partial \beta_j} = 0 \text{ and } \frac{\partial \Phi}{\partial \phi_j} = 0,$$
$$\frac{\partial \Phi}{\partial \theta_u} = 0 \text{ if } \theta_u > 0 \text{ and } \frac{\partial \Phi}{\partial \theta_u} < 0 \text{ if } \theta_u = 0$$
$$\frac{\partial \Phi}{\partial \gamma_u} = 0 \text{ if } \gamma_u > 0 \text{ and } \frac{\partial \Phi}{\partial \gamma_u} < 0 \text{ if } \gamma_u = 0$$

for $j = 1, \ldots, p$ and $u = 1, \ldots, m$

▲□ > ▲圖 > ▲ 目 > ▲目 > → 目 → のへで

- Let $\eta^{(k)}$ be the estimate of η at iteration k
- At iter. k + 1, first update η_1 by Newton (or Gauss-Newton):

MPL

$$\eta_1^{(k+1)} = \eta_1^{(k)} + \omega_1^{(k)} \mathbf{S}_1^{(k)} \frac{\partial \Phi(\eta_1^{(k)}, \eta_2^{(k)})}{\partial \eta_1}$$

• Then update η_2 by the MI algorithm:

$$\eta_2^{(k+1)} = \eta_2^{(k)} + \omega_2^{(k)} \mathbf{S}_2^{(k)} \frac{\partial \Phi(\eta_1^{(k+1)}, \eta_2^{(k)})}{\partial \eta_2}$$

- Let $\eta^{(k)}$ be the estimate of η at iteration k
- At iter. k + 1, first update η_1 by Newton (or Gauss-Newton):

MPL

$$\eta_1^{(k+1)} = \eta_1^{(k)} + \omega_1^{(k)} \mathbf{S}_1^{(k)} \frac{\partial \Phi(\eta_1^{(k)}, \eta_2^{(k)})}{\partial \eta_1}$$

• Then update η_2 by the MI algorithm:

$$\eta_{2}^{(k+1)} = \eta_{2}^{(k)} + \omega_{2}^{(k)} \mathbf{S}_{2}^{(k)} \frac{\partial \Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k)})}{\partial \eta_{2}}$$

where
$$\begin{split} \mathbf{S}_{2}^{(k)} &= \operatorname{diag}(\mathbf{S}_{21}^{(k)}, \mathbf{S}_{22}^{(k)}) \\ \omega_{1}^{(k)} \text{ and } \omega_{2}^{(k)} \text{ are line search step sizes assuring} \\ \Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k+1)}) \geq \Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k)}) \geq \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)}) \\ &= \Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k+1)}) \geq \Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k)}) \geq \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)}) \\ &= \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)}) \geq \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)}) \geq \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)}) \\ &= \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)}) \geq \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)})$$

Copulas Likelihood

- Let $\eta^{(k)}$ be the estimate of η at iteration k
- At iter. k + 1, first update η_1 by Newton (or Gauss-Newton):

asymptotics Simulations Data Analysis

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

MPL

$$\eta_1^{(k+1)} = \eta_1^{(k)} + \omega_1^{(k)} \mathbf{S}_1^{(k)} \frac{\partial \Phi(\eta_1^{(k)}, \eta_2^{(k)})}{\partial \eta_1}$$

• Then update η_2 by the MI algorithm:

$$\eta_2^{(k+1)} = \eta_2^{(k)} + \omega_2^{(k)} \mathbf{S}_2^{(k)} \frac{\partial \Phi(\eta_1^{(k+1)}, \eta_2^{(k)})}{\partial \eta_2}$$

where

$$\mathbf{S}_{2}^{(k)} = \text{diag}(\mathbf{S}_{21}^{(k)}, \mathbf{S}_{22}^{(k)})$$

 $\omega_{1}^{(k)}$ and $\omega_{2}^{(k)}$ are line search step sizes assuring
 $\Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k+1)}) \ge \Phi(\eta_{1}^{(k+1)}, \eta_{2}^{(k)}) \ge \Phi(\eta_{1}^{(k)}, \eta_{2}^{(k)})$

• The MI algorithm is very efficient when m is large

MPL

- It is easy to implement; only demands the first derivative
- No need to solve a difficult linear system in each iteration
- Our experience shows it performs well and generally has a good convergence speed
- The rational of this algorithm is that it solves the KKT conditions efficiently
- Its convergence properties have been investigated in Chan and Ma (2012) (IEEE Trans. Image Processing)

- The MI algorithm is very efficient when m is large
- It is easy to implement; only demands the first derivative

MPL

- No need to solve a difficult linear system in each iteration
- Our experience shows it performs well and generally has a good convergence speed
- The rational of this algorithm is that it solves the KKT conditions efficiently
- Its convergence properties have been investigated in Chan and Ma (2012) (IEEE Trans. Image Processing)

• The MI algorithm is very efficient when m is large

MPL

- It is easy to implement; only demands the first derivative
- No need to solve a difficult linear system in each iteration
- Our experience shows it performs well and generally has a good convergence speed
- The rational of this algorithm is that it solves the KKT conditions efficiently
- Its convergence properties have been investigated in Chan and Ma (2012) (IEEE Trans. Image Processing)

• The MI algorithm is very efficient when m is large

MPL

- It is easy to implement; only demands the first derivative
- No need to solve a difficult linear system in each iteration
- Our experience shows it performs well and generally has a good convergence speed
- The rational of this algorithm is that it solves the KKT conditions efficiently
- Its convergence properties have been investigated in Chan and Ma (2012) (IEEE Trans. Image Processing)

• The MI algorithm is very efficient when m is large

MPL

- It is easy to implement; only demands the first derivative
- No need to solve a difficult linear system in each iteration
- Our experience shows it performs well and generally has a good convergence speed
- The rational of this algorithm is that it solves the KKT conditions efficiently
- Its convergence properties have been investigated in Chan and Ma (2012) (IEEE Trans. Image Processing)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

• The MI algorithm is very efficient when m is large

MPL

- It is easy to implement; only demands the first derivative
- No need to solve a difficult linear system in each iteration
- Our experience shows it performs well and generally has a good convergence speed
- The rational of this algorithm is that it solves the KKT conditions efficiently
- Its convergence properties have been investigated in Chan and Ma (2012) (IEEE Trans. Image Processing)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

• Let $\mu_{1n} = h_{1n}/n, \mu_{2n} = h_{2n}/n$

Theorem

Assume $m = n^{\vee}$ where $0 < \nu < 1$, and μ_{1n} and $\mu_{2n} \to 0$ as $n \to \infty$ Assume $\lambda_{0T}(x)$ and $\lambda_{0C}(x)$ have up to $r \ge 1$ derivatives. Then, under certain conditions and when $n \to \infty$ $\|\widehat{\beta} - \beta_0\|^2 \to 0$ (a.s.) and $\|\widehat{\phi} - \phi_0\|^2 \to 0$ (a.s.).

- - The results on $\lambda_{0T}^0(t)$ and $\lambda_{0C}^0(t)$ are nonparametric

• Let
$$\mu_{1n} = h_{1n}/n, \mu_{2n} = h_{2n}/n$$

Theorem

Assume $m = n^{\vee}$ where $0 < \nu < 1$, and μ_{1n} and $\mu_{2n} \to 0$ as $n \to \infty$ Assume $\lambda_{0T}(x)$ and $\lambda_{0C}(x)$ have up to $r \ge 1$ derivatives. Then, under certain conditions and when $n \to \infty$ (1) $\|\widehat{\beta} - \beta_0\|^2 \to 0$ (a.s.) and $\|\widehat{\phi} - \phi_0\|^2 \to 0$ (a.s.).

- ② $\sup_{t \in [x(1),x(n)]} |\widehat{\lambda}_{0T}(t) \lambda^{0}_{0T}(t)| \rightarrow 0$ (a.s.) and $\sup_{t \in [x(1),x(n)]} |\widehat{\phi}_{0T}(t) - \phi^{0}_{0T}(t)| \rightarrow 0$ (a.s).
 - The results on $\lambda_{0T}^0(t)$ and $\lambda_{0C}^0(t)$ are nonparametric

• Let
$$\mu_{1n} = h_{1n}/n, \mu_{2n} = h_{2n}/n$$

Theorem

Assume $m = n^{\vee}$ where $0 < \nu < 1$, and μ_{1n} and $\mu_{2n} \to 0$ as $n \to \infty$ Assume $\lambda_{0T}(x)$ and $\lambda_{0C}(x)$ have up to $r \ge 1$ derivatives. Then, under certain conditions and when $n \to \infty$ $||\widehat{\beta} - \beta_0||^2 \to 0$ (a.s.) and $||\widehat{\phi} - \phi_0||^2 \to 0$ (a.s.). $||\widehat{\beta} - \beta_0||^2 \to 0$ (a.s.) and $||\widehat{\phi} - \phi_0||^2 \to 0$ (a.s.). $||\widehat{\beta} - \beta_0||^2 \to 0$ (a.s.) and $||\widehat{\phi}_{0T}(t) - \lambda_{0T}^0(t)| \to 0$ (a.s.) and $\sup_{t \in [x(1), x(n)]} ||\widehat{\phi}_{0T}(t) - \phi_{0T}^0(t)| \to 0$ (a.s.).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• The results on $\lambda_{0T}^0(t)$ and $\lambda_{0C}^0(t)$ are nonparametric

• Let
$$\mu_{1n} = h_{1n}/n, \mu_{2n} = h_{2n}/n$$

Theorem

Assume $m = n^{\vee}$ where $0 < \nu < 1$, and μ_{1n} and $\mu_{2n} \to 0$ as $n \to \infty$ Assume $\lambda_{0T}(x)$ and $\lambda_{0C}(x)$ have up to $r \ge 1$ derivatives. Then, under certain conditions and when $n \to \infty$ $||\widehat{\beta} - \beta_0||^2 \to 0$ (a.s.) and $||\widehat{\phi} - \phi_0||^2 \to 0$ (a.s.). $||\widehat{\beta} - \beta_0||^2 \to 0$ (a.s.) and $||\widehat{\phi} - \phi_0||^2 \to 0$ (a.s.). $||\widehat{\beta} - \beta_0||^2 \to 0$ (a.s.) and $||\widehat{\phi}_{0T}(t) - \lambda_{0T}^0(t)| \to 0$ (a.s.) and $\sup_{t \in [x(1), x(n)]} ||\widehat{\phi}_{0T}(t) - \phi_{0T}^0(t)| \to 0$ (a.s.).

• The results on $\lambda_{0T}^{0}(t)$ and $\lambda_{0C}^{0}(t)$ are nonparametric

- Asymptotics useful for inferences are obtained with fixed m
- Need to consider $\theta_u = 0$ and $\gamma_u = 0$; boundary values will invalid inv(-Hessian) as covariance!
- Assume: q and r active constraints for heta and γ respectively

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Let U_{[2(m+p)-q-r]×[2(m+p)]} be matrix to indicate active constraints
- Let $\mathbf{G}_0(\boldsymbol{\eta}) = -n^{-1} E_{\boldsymbol{\eta}_0} \partial^2 l(\boldsymbol{\eta}) / \partial \boldsymbol{\eta} \partial \boldsymbol{\eta}^T$
- Let $\widetilde{\mathsf{G}}_0(\eta)^{-1} = \mathsf{U}(\mathsf{U}^{\mathsf{T}}\mathsf{G}_0(\eta)\mathsf{U})^{-1}\mathsf{U}^{\mathsf{T}}$

- Asymptotics useful for inferences are obtained with fixed m
- Need to consider $\theta_u = 0$ and $\gamma_u = 0$; boundary values will invalid inv(-Hessian) as covariance!
- Assume: q and r active constraints for heta and γ respectively

- Let U_{[2(m+p)-q-r]×[2(m+p)]} be matrix to indicate active constraints
- Let $\mathbf{G}_0(\boldsymbol{\eta}) = -n^{-1} E_{\boldsymbol{\eta}_0} \partial^2 l(\boldsymbol{\eta}) / \partial \boldsymbol{\eta} \partial \boldsymbol{\eta}^T$
- Let $\widetilde{\mathsf{G}}_0(\eta)^{-1} = \mathsf{U}(\mathsf{U}^{\mathsf{T}}\mathsf{G}_0(\eta)\mathsf{U})^{-1}\mathsf{U}^{\mathsf{T}}$

- Asymptotics useful for inferences are obtained with fixed m
- Need to consider $\theta_u = 0$ and $\gamma_u = 0$; boundary values will invalid inv(-Hessian) as covariance!
- Assume: q and r active constraints for heta and γ respectively

- Let U_{[2(m+p)-q-r]×[2(m+p)]} be matrix to indicate active constraints
- Let $\mathbf{G}_0(\boldsymbol{\eta}) = -n^{-1}E_{\boldsymbol{\eta}_0}\partial^2 I(\boldsymbol{\eta})/\partial\boldsymbol{\eta}\partial\boldsymbol{\eta}^T$
- Let $\widetilde{\mathsf{G}}_0(\eta)^{-1} = \mathsf{U}(\mathsf{U}^{\mathsf{T}}\mathsf{G}_0(\eta)\mathsf{U})^{-1}\mathsf{U}^{\mathsf{T}}$

- Asymptotics useful for inferences are obtained with fixed m
- Need to consider $\theta_u = 0$ and $\gamma_u = 0$; boundary values will invalid inv(-Hessian) as covariance!
- Assume: q and r active constraints for heta and γ respectively

- Let U_{[2(m+p)-q-r]×[2(m+p)]} be matrix to indicate active constraints
- Let $\mathbf{G}_0(\boldsymbol{\eta}) = -n^{-1}E_{\boldsymbol{\eta}_0}\partial^2 l(\boldsymbol{\eta})/\partial\boldsymbol{\eta}\partial\boldsymbol{\eta}^T$
- Let $\widetilde{\mathsf{G}}_0(\eta)^{-1} = \mathsf{U}(\mathsf{U}^{\mathsf{T}}\mathsf{G}_0(\eta)\mathsf{U})^{-1}\mathsf{U}^{\mathsf{T}}$

- Asymptotics useful for inferences are obtained with fixed m
- Need to consider $\theta_u = 0$ and $\gamma_u = 0$; boundary values will invalid inv(-Hessian) as covariance!
- Assume: q and r active constraints for heta and γ respectively

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

- Let U_{[2(m+p)-q-r]×[2(m+p)]} be matrix to indicate active constraints
- Let $\mathbf{G}_0(\boldsymbol{\eta}) = -n^{-1} \mathcal{E}_{\boldsymbol{\eta}_0} \partial^2 l(\boldsymbol{\eta}) / \partial \boldsymbol{\eta} \partial \boldsymbol{\eta}^T$
- Let $\widetilde{\mathsf{G}}_0(\eta)^{-1} = \mathsf{U}(\mathsf{U}^{\mathsf{T}}\mathsf{G}_0(\eta)\mathsf{U})^{-1}\mathsf{U}^{\mathsf{T}}$

- Asymptotics useful for inferences are obtained with fixed m
- Need to consider $\theta_u = 0$ and $\gamma_u = 0$; boundary values will invalid inv(-Hessian) as covariance!
- Assume: q and r active constraints for heta and γ respectively

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

- Let U_{[2(m+p)-q-r]×[2(m+p)]} be matrix to indicate active constraints
- Let $\mathbf{G}_0(\eta) = -n^{-1} E_{\eta_0} \partial^2 l(\eta) / \partial \eta \partial \eta^T$
- Let $\widetilde{\mathsf{G}}_0(\eta)^{-1} = \mathsf{U}(\mathsf{U}^{\mathsf{T}}\mathsf{G}_0(\eta)\mathsf{U})^{-1}\mathsf{U}^{\mathsf{T}}$

• Let η_0 be the true η corresponding to the fixed m

Theorem

Assume *m* is fixed. Assume μ_{1n} and μ_{2n} are $o(n^{-1/2})$. Then The MPL estimator $\hat{\eta}$ is consistent for η_0 and,

2 the distribution of $\sqrt{n}(\widehat{\eta} - \eta_0)$ converges, when $n \to \infty$, to $N(\mathbf{0}_{2(p+m)\times 1}, \widetilde{\mathbf{G}}_0(\eta_0)^{-1})$.

• Let η_0 be the true η corresponding to the fixed m

Theorem

Assume m is fixed. Assume μ_{1n} and μ_{2n} are $o(n^{-1/2})$. Then The MPL estimator $\hat{\eta}$ is consistent for η_0 and,

2 the distribution of $\sqrt{n}(\hat{\eta} - \eta_0)$ converges, when $n \to \infty$, to $N(\mathbf{0}_{2(p+m)\times 1}, \widetilde{\mathbf{G}}_0(\eta_0)^{-1}).$

Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion Simulations

Used 2 covariates: Z₁ ~ Bernoulli(0.5) and Z₂ ~ U(-10, 10)
Marginal hazards for T and C:

 $\lambda_T(t) = \lambda_{0T}(t) \exp(-0.5Z_1 + 0.1Z_2)$ $\lambda_C(t) = \lambda_{0C}(t) \exp(0.3Z_1 + 0.2Z_2)$

where $\lambda_{0C}(t) = 1/5$ and $\lambda_{0T}(t) = 2t/\lambda_t^2$

- The simulation involved both dependent and independent censoring
- Distribution for the independent censoring time was U(0, 10)

- Random samples generated using the Frank copula
- \bullet We used Kendall's $\tau=0.8$ and $\tau=0.3$

- Used 2 covariates: $Z_1 \sim$ Bernoulli(0.5) and $Z_2 \sim$ U(-10, 10)
- Marginal hazards for T and C:

$$\lambda_T(t) = \lambda_{0T}(t) exp(-0.5Z_1 + 0.1Z_2)$$
$$\lambda_C(t) = \lambda_{0C}(t) exp(0.3Z_1 + 0.2Z_2)$$

- The simulation involved both dependent and independent censoring
- Distribution for the independent censoring time was U(0, 10)

- Random samples generated using the Frank copula
- \bullet We used Kendall's $\tau=0.8$ and $\tau=0.3$

- Used 2 covariates: $Z_1 \sim {\sf Bernoulli}(0.5)$ and $Z_2 \sim {\sf U}(\text{-10, 10})$
- Marginal hazards for T and C:

$$\lambda_T(t) = \lambda_{0T}(t) exp(-0.5Z_1 + 0.1Z_2)$$
$$\lambda_C(t) = \lambda_{0C}(t) exp(0.3Z_1 + 0.2Z_2)$$

- The simulation involved both dependent and independent censoring
- Distribution for the independent censoring time was U(0, 10)

- Random samples generated using the Frank copula
- We used Kendall's au = 0.8 and au = 0.3

- Used 2 covariates: $Z_1 \sim$ Bernoulli(0.5) and $Z_2 \sim$ U(-10, 10)
- Marginal hazards for T and C:

$$\lambda_T(t) = \lambda_{0T}(t) exp(-0.5Z_1 + 0.1Z_2)$$
$$\lambda_C(t) = \lambda_{0C}(t) exp(0.3Z_1 + 0.2Z_2)$$

- The simulation involved both dependent and independent censoring
- Distribution for the independent censoring time was U(0, 10)

- Random samples generated using the Frank copula
- We used Kendall's au = 0.8 and au = 0.3

- Used 2 covariates: $Z_1 \sim {\sf Bernoulli}(0.5)$ and $Z_2 \sim {\sf U}(\text{-10, 10})$
- Marginal hazards for T and C:

$$\lambda_T(t) = \lambda_{0T}(t) exp(-0.5Z_1 + 0.1Z_2)$$
$$\lambda_C(t) = \lambda_{0C}(t) exp(0.3Z_1 + 0.2Z_2)$$

- The simulation involved both dependent and independent censoring
- Distribution for the independent censoring time was U(0, 10)

- Random samples generated using the Frank copula
- We used Kendall's $\tau = 0.8$ and $\tau = 0.3$

- Used 2 covariates: $Z_1 \sim {\sf Bernoulli}(0.5)$ and $Z_2 \sim {\sf U}(\text{-10, 10})$
- Marginal hazards for T and C:

$$\lambda_T(t) = \lambda_{0T}(t) exp(-0.5Z_1 + 0.1Z_2)$$
$$\lambda_C(t) = \lambda_{0C}(t) exp(0.3Z_1 + 0.2Z_2)$$

- The simulation involved both dependent and independent censoring
- Distribution for the independent censoring time was U(0, 10)
- Random samples generated using the Frank copula
- We used Kendall's au= 0.8 and au= 0.3

- $\pi_t = \text{proportion of events}$
- $\pi_c = \text{proportion of dependent censoring}$
- For $\tau = 0.8, \lambda_t = 2 \Rightarrow \{\pi_t = 46\%, \pi_c = 35\%\};$ for $\tau = 0.8, \lambda_t = 3.5 \Rightarrow \{\pi_t = 22\%, \pi_c = 48\%\}$
- For $\tau = 0.3, \lambda_t = 2 \Rightarrow \{\pi_t = 47\%, \pi_c = 35\%\}$
- For each simulated data set, we computed the MPL or ML estimates with an assumed τ (denoted by $\tilde{\tau}$)
- $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$ were approximated by piecewise constant functions (indicator basis)
- We applied a single smoothing parameter to all replication samples

- $\pi_t = \text{proportion of events}$
- $\pi_c = \text{proportion of dependent censoring}$
- For $\tau = 0.8$, $\lambda_t = 2 \Rightarrow \{\pi_t = 46\%, \pi_c = 35\%\}$; for $\tau = 0.8$, $\lambda_t = 3.5 \Rightarrow \{\pi_t = 22\%, \pi_c = 48\%\}$
- For $\tau = 0.3, \lambda_t = 2 \Rightarrow \{\pi_t = 47\%, \pi_c = 35\%\}$
- For each simulated data set, we computed the MPL or ML estimates with an assumed τ (denoted by $\widetilde{\tau})$
- λ_{0T}(t) and λ_{0C}(t) were approximated by piecewise constant functions (indicator basis)
- We applied a single smoothing parameter to all replication samples

- $\pi_t = \text{proportion of events}$ $\pi_t = \text{proportion of dependent control of the second secon$
- $\pi_{c} = \text{proportion of dependent censoring}$
- For $\tau = 0.8$, $\lambda_t = 2 \Rightarrow \{\pi_t = 46\%, \pi_c = 35\%\}$; for $\tau = 0.8$, $\lambda_t = 3.5 \Rightarrow \{\pi_t = 22\%, \pi_c = 48\%\}$
- For $\tau = 0.3, \lambda_t = 2 \Rightarrow \{\pi_t = 47\%, \pi_c = 35\%\}$
- For each simulated data set, we computed the MPL or ML estimates with an assumed τ (denoted by $\tilde{\tau}$)
- λ_{0T}(t) and λ_{0C}(t) were approximated by piecewise constant functions (indicator basis)
- We applied a single smoothing parameter to all replication samples

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○ ○ ○

- $\pi_t = \text{proportion of events}$
- $\pi_c = \text{proportion of dependent censoring}$
- For $\tau = 0.8, \lambda_t = 2 \Rightarrow \{\pi_t = 46\%, \pi_c = 35\%\};$ for $\tau = 0.8, \lambda_t = 3.5 \Rightarrow \{\pi_t = 22\%, \pi_c = 48\%\}$

• For
$$\tau = 0.3, \lambda_t = 2 \Rightarrow \{\pi_t = 47\%, \pi_c = 35\%\}$$

- For each simulated data set, we computed the MPL or ML estimates with an assumed τ (denoted by $\tilde{\tau}$)
- $\lambda_{0T}(t)$ and $\lambda_{0C}(t)$ were approximated by piecewise constant functions (indicator basis)
- We applied a single smoothing parameter to all replication samples

- $\pi_t = \text{proportion of events}$
- $\pi_c = \text{proportion of dependent censoring}$
- For $\tau = 0.8, \lambda_t = 2 \Rightarrow \{\pi_t = 46\%, \pi_c = 35\%\};$ for $\tau = 0.8, \lambda_t = 3.5 \Rightarrow \{\pi_t = 22\%, \pi_c = 48\%\}$

• For
$$\tau = 0.3, \lambda_t = 2 \Rightarrow \{\pi_t = 47\%, \pi_c = 35\%\}$$

- For each simulated data set, we computed the MPL or ML estimates with an assumed τ (denoted by $\tilde{\tau}$)
- λ_{0T}(t) and λ_{0C}(t) were approximated by piecewise constant functions (indicator basis)
- We applied a single smoothing parameter to all replication samples

- $\pi_t = \text{proportion of events}$
- $\pi_c = \text{proportion of dependent censoring}$
- For $\tau = 0.8$, $\lambda_t = 2 \Rightarrow \{\pi_t = 46\%, \pi_c = 35\%\}$; for $\tau = 0.8$, $\lambda_t = 3.5 \Rightarrow \{\pi_t = 22\%, \pi_c = 48\%\}$

• For
$$\tau = 0.3, \lambda_t = 2 \Rightarrow \{\pi_t = 47\%, \pi_c = 35\%\}$$

- For each simulated data set, we computed the MPL or ML estimates with an assumed τ (denoted by $\tilde{\tau}$)
- λ_{0T}(t) and λ_{0C}(t) were approximated by piecewise constant functions (indicator basis)
- We applied a single smoothing parameter to all replication samples

- Based on a random selected sample, *m* chosen by minimizing AIC; each bin contained approximately an equal number of observations
- Given an *m*, fixed $h_2 = 0$ and selected h_1 by maximizing the approximate CV criterion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We used N = 500 replication samples in the simulation

- Based on a random selected sample, *m* chosen by minimizing AIC; each bin contained approximately an equal number of observations
- Given an *m*, fixed $h_2 = 0$ and selected h_1 by maximizing the approximate CV criterion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We used N = 500 replication samples in the simulation

- Based on a random selected sample, *m* chosen by minimizing AIC; each bin contained approximately an equal number of observations
- Given an *m*, fixed $h_2 = 0$ and selected h_1 by maximizing the approximate CV criterion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We used N = 500 replication samples in the simulation

Simulations

ГАВ	LE1 Su	nmary c	fsimulati	on resul	ts for the ma	ximum pe	nalized l	ikelihood	estimate	es of β and ϕ	
	BIAS	SD	AASD	MSE	CP(95%)	BIAS	SD	AASD	MSE	CP(95%)	
$r = 0.8, \lambda_t = 2(\pi_t = 46\%, \pi_c = 35\%)$ n = 200 [Frank copula and $\tilde{\tau} = 0.8$]							$\tau = 0.8$, $\lambda_t = 2(\pi_t = 46\%, \pi_c = 35\%)$ n = 1000 [Frank copula and $\tilde{\tau} = 0.8$]				
β_1	0.009	0.166	0.171	0.028	0.952	0.012	0.073	0.075	0.005	0.954	
β_2	-0.010	0.016	0.016	0.000	0.918	-0.005	0.007	0.007	0.000	0.878	
ϕ_1	0.053	0.191	0.197	0.039	0.944	0.008	0.087	0.087	0.007	0.952	
$\phi_2 = \tau =$	-0.002 $0.8, \lambda_t = 2$	0.024 = 46	0.024 %, $\pi_c = 3$	0.001 5%), n =	0.938 200	-0.005	0.011	0.011	0.000	0.910	
[Frank copula and $\tilde{\tau} = 0.4$]							[Independent censoring]				
β_1	-0.149	0.177	0.196	0.054	0.914	-0.266	0.199	0.221	0.110	0.826	
β_2	-0.035	0.018	0.019	0.002	0.568	-0.065	0.020	0.022	0.005	0.154	
ϕ_1	0.225	0.212	0.233	0.096	0.898	0.247	0.236	0.251	0.117	0.886	
ϕ_2	0.029	0.027	0.028	0.002	0.872	0.037	0.029	0.030	0.002	0.814	
τ = [Cla	$0.8, \lambda_t = 1$ ayton copu	$f(\pi_t = 46)$ la and $\tilde{\tau}$	$(\%, \pi_c = 3)$ = 0.8]	5%), n =	[Gumbel copula and $\bar{\tau} = 0.8$]						
β_1	0.048	0.174	0.176	0.033	0.940	0.064	0.163	0.171	0.031	0.932	
β_2	-0.007	0.017	0.017	0.000	0.930	-0.008	0.016	0.017	0.000	0.938	
ϕ_1	0.024	0.210	0.199	0.045	0.924	-0.033	0.188	0.196	0.036	0.964	
ϕ_2	-0.006	0.027	0.024	0.001	0.906	-0.015	0.022	0.021	0.001	0.842	
$\tau = 0.8, \lambda_l = 3.5(\pi_l = 22\%, \pi_c = 48\%), n = 200$ [Frank copula and $\tilde{\tau} = 0.8$]						[Independent censoring]					
β_1	-0.007	0.216	0.217	0.047	0.962	-0.491	0.316	0.337	0.341	0.730	
β_2	-0.013	0.023	0.023	0.001	0.890	-0.11	0.035	0.037	0.013	0.148	
ϕ_1	0.017	0.182	0.187	0.033	0.956	0.131	0.204	0.210	0.059	0.916	
ϕ_2	-0.008	0.021	0.022	0.000	0.924	0.018	0.024	0.024	0.001	0.910	
τ = [Fra	$0.3, \lambda_l = 1$ ank copula	$\pi_t = 47$ and $\tilde{\tau} =$	$[\%, \pi_c = 3]$ = 0.3]	5%), n =	[Independent censoring]						
β_1	0.046	0.192	0.195	0.039	0.940	-0.053	0.215	0.216	0.049	0.946	
β_2	-0.010	0.020	0.020	0.000	0.918	-0.031	0.021	0.022	0.001	0.706	
ϕ_1	0.024	0.211	0.229	0.045	0.970	0.093	0.229	0.247	0.061	0.954	
ϕ_2	-0.006	0.027	0.026	0.001	0.928	0.003	0.029	0.027	0.001	0.944	
$\tau = 0.3, \lambda_l = 2(\pi_l = 47\%, \pi_c = 35\%)$ n = 200							$\tau = 0.8, \lambda_l = 2(\pi_l = 46\%, \pi_c = 35\%)$ n = 200				
[Frank copula and $\tilde{\tau} = 0.8$]						[Frank copula and $\tilde{\tau} = 0.8$ Chen's ML]					
β_1	0.271	0.152	0.158	0.096	0.586	-0.017	0.175	0.174	0.031	0.958	
β_2	0.013	0.016	0.016	0.000	0.872	-0.001	0.017	0.017	0.000	0.936	
ϕ_1	-0.276	0.152	0.164	0.099	0.614	0.012	0.197	0.213	0.039	0.915	
de.	-0.057	0.019	0.018	0.004	0.158	0.004	0.025	0.027	0.001	0.879	

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion
Simulations

TABLE 2 Results for the maximum penalized likelihood (MPL) and maximum likelihood (ML) estimates of $\lambda_{0T}(t)$ assuming Frank copula with $\tilde{\tau} = 0.8$

t	0.5	1.0	1.5	2.0	2.5	3.0	3.5			
MPL										
BIAS	-0.092	-0.074	-0.076	-0.110	-0.218	-0.374	-0.605			
SD	0.120	0.147	0.145	0.165	0.183	0.196	0.207			
AASD	0.065	0.100	0.120	0.145	0.165	0.180	0.192			
MSE	0.023	0.027	0.027	0.039	0.081	0.178	0.409			
ML										
BIAS	-0.060	-0.048	-0.040	-0.042	-0.161	-0.210	-0.384			
SD	0.212	0.302	0.324	0.393	0.414	0.531	0.562			
AASD	0.210	0.245	0.281	0.350	0.396	0.463	0.495			
MSE	0.048	0.094	0.107	0.157	0.197	0.326	0.464			
Chen's ML										
BIAS	1.932	9.858	4.967	5.418	6.602	41.14	17.97			
SD	19.82	190.4	40.12	31.08	41.33	622.7	137.3			
AASD	8.355	6.538	6.771	7.184	7.924	10.17	11.37			
MSE	396.7	36341	1634	995.5	1752	389463	19165			

Simulations

Simulations

æ

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

- AIC gives m = 26 regardless of τ
- For $\tau = 0, 0.2, 0.5, 0.8$ optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

- AIC gives m = 26 regardless of au
- For au = 0, 0.2, 0.5, 0.8optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

- AIC gives m = 26 regardless of au
- For $\tau = 0, 0.2, 0.5, 0.8$ optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

- AIC gives m = 26 regardless of au
- For $\tau = 0, 0.2, 0.5, 0.8$ optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

- AIC gives m = 26 regardless of τ
- For $\tau = 0, 0.2, 0.5, 0.8$ optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

- AIC gives m = 26 regardless of au
- For au = 0, 0.2, 0.5, 0.8optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$
Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion Dementia data analysis

- We analyzed the data by assuming a Frank copula model, and
- performed a sensitivity analysis, i.e. we fit the model repeatedly using Kendall's $\tau = 0, 0.2, 0.5, 0.8$
- Results based on Clayton or Gumbel copulas are similar
- Adopted equal number of observations in each bin
- Used piecewise constant function approximating $\lambda_{0T}(t)$

<ロ> <同> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日> <日</p>

- AIC gives m = 26 regardless of au
- For $\tau = 0, 0.2, 0.5, 0.8$ optimal $h_1 = 1.2 \times 10^5, 10^5, 8 \times 10^4, 3 \times 10^4$

Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion

Dementia data analysis

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへで

Dementia data analysis

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへで

- We developed a novel estimation method for Cox proportional hazard models under dependent censoring using copulas and penalized likelihood
- It can provide quality MPL estimates if the selected copula can reasonably correctly model dependence between the failure and censoring times
- An incorrect copula has less effect than incorrect au
- The MPL estimate of baseline hazard usually offers smaller MSE, as well as much improved interpretations, over its ML counterpart
- As true τ is unknown, recommend to conduct a sensitivity analysis for a range of τ values

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We developed a novel estimation method for Cox proportional hazard models under dependent censoring using copulas and penalized likelihood
- It can provide quality MPL estimates if the selected copula can reasonably correctly model dependence between the failure and censoring times
- \bullet An incorrect copula has less effect than incorrect τ
- The MPL estimate of baseline hazard usually offers smaller MSE, as well as much improved interpretations, over its ML counterpart
- As true τ is unknown, recommend to conduct a sensitivity analysis for a range of τ values

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

- We developed a novel estimation method for Cox proportional hazard models under dependent censoring using copulas and penalized likelihood
- It can provide quality MPL estimates if the selected copula can reasonably correctly model dependence between the failure and censoring times
- \bullet An incorrect copula has less effect than incorrect τ
- The MPL estimate of baseline hazard usually offers smaller MSE, as well as much improved interpretations, over its ML counterpart
- As true τ is unknown, recommend to conduct a sensitivity analysis for a range of τ values

▲□▶▲□▶▲□▶▲□▶ ■ のへで

- We developed a novel estimation method for Cox proportional hazard models under dependent censoring using copulas and penalized likelihood
- It can provide quality MPL estimates if the selected copula can reasonably correctly model dependence between the failure and censoring times
- \bullet An incorrect copula has less effect than incorrect τ
- The MPL estimate of baseline hazard usually offers smaller MSE, as well as much improved interpretations, over its ML counterpart
- As true τ is unknown, recommend to conduct a sensitivity analysis for a range of τ values

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

- We developed a novel estimation method for Cox proportional hazard models under dependent censoring using copulas and penalized likelihood
- It can provide quality MPL estimates if the selected copula can reasonably correctly model dependence between the failure and censoring times
- \bullet An incorrect copula has less effect than incorrect τ
- The MPL estimate of baseline hazard usually offers smaller MSE, as well as much improved interpretations, over its ML counterpart
- As true τ is unknown, recommend to conduct a sensitivity analysis for a range of τ values