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Introduction

@ In practical survival analysis, the event time and censoring
time are sometimes correlated

@ In this talk, we discuss semi-parametric Cox model fitting
when dependent censoring presents

@ Particularly, we discuss how to perform likelihood or penalized
likelihood estimation of the model parameters, including
(i) regression coefficients; and
(i) the baseline hazard
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Introduction

@ In practical survival analysis, the event time and censoring
time are sometimes correlated

@ In this talk, we discuss semi-parametric Cox model fitting
when dependent censoring presents

@ Particularly, we discuss how to perform likelihood or penalized
likelihood estimation of the model parameters, including
(i) regression coefficients; and
(i) the baseline hazard

@ We adopt copulas to describe the dependence
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@ Dependence can be modeled using copula or frailty

@ Two existing copula-based methods:

e Huang and Zhang (2008, Biometrics) adopted a
self-consistent estimator together with partial likelihood

@ They used a computational expensive bootstrap method to
estimate the standard errors
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@ Two existing copula-based methods:

e Huang and Zhang (2008, Biometrics) adopted a
self-consistent estimator together with partial likelihood

@ They used a computational expensive bootstrap method to
estimate the standard errors

@ Chen (2010, JRSSB) used the maximum likelihood (ML)
method and developed consistency and asymptotic properties
of the estimators

@ Chen used a built-in MATLAB optimizer for constrained
optimization which may be inefficient when the number of
constraints is large
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Introduction

@ Dependence can be modeled using copula or frailty

@ Two existing copula-based methods:

e Huang and Zhang (2008, Biometrics) adopted a
self-consistent estimator together with partial likelihood

@ They used a computational expensive bootstrap method to
estimate the standard errors

@ Chen (2010, JRSSB) used the maximum likelihood (ML)
method and developed consistency and asymptotic properties
of the estimators

@ Chen used a built-in MATLAB optimizer for constrained
optimization which may be inefficient when the number of
constraints is large

@ Both methods do not provide smooth baseline hazard
estimate, and thus, the baseline hazard results can be difficult
to interpret
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6 months
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Dementia example

@ Data from the PRIME study

@ A longitudinal study followed 970 patients, with either
dementia or mild cognitive impairment in Australia

@ Interested in identifying predictors for time to
institutionalization

@ Patients were assessed annually with additional visits at 3 and
6 months

@ Predictors: age, sex, education level, living alone, dementia
type, baseline cognition ability (MMSE), baseline function
ability (SMAF), baseline neuropsychiatric symptoms (total
NPI), baseline dementia severity (CDR), baseline care-giver
burden (ZBI), medication types, changes in cognition ability,
function ability, neuropsychiatric symptoms, at 3 months,
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- 146 (25.0%) withdrew before the 3-year period; and
- 281 (48.2%) not institutionalized after full 3-year
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@ In Brodaty et al (2014) initial analyses assumed independent
censoring



Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion

Dementia example

@ 583 patients with complete data

o Among them
- 156 patients (26.8%) were institutionalized during the study;
- 146 (25.0%) withdrew before the 3-year period; and
- 281 (48.2%) not institutionalized after full 3-year

@ In Brodaty et al (2014) initial analyses assumed independent
censoring

@ Patients withdrew from the studies appeared more likely to be
institutionalized than the patients remained in the studies
(e.g. older, more severe dementia, etc)
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Dementia example

@ 583 patients with complete data

o Among them
- 156 patients (26.8%) were institutionalized during the study;
- 146 (25.0%) withdrew before the 3-year period; and
- 281 (48.2%) not institutionalized after full 3-year

@ In Brodaty et al (2014) initial analyses assumed independent
censoring

@ Patients withdrew from the studies appeared more likely to be
institutionalized than the patients remained in the studies
(e.g. older, more severe dementia, etc)

@ Wish to develop Cox model fitting methods allowing both
dependent and independent censorings
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function

o Let K(a, b; ) be a copula function
- where « is the association parameter; and

- it can be converted to 7 = Kendall's rank corr coef
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Copulas

@ Let T = event time; C = dependent censoring time

@ Dependence between T and C is captured via a copula
function

e Let K(a, b; @) be a copula function
- where « is the association parameter; and
- it can be converted to 7 = Kendall's rank corr coef

@ At time t, the joint survival function of T and C is modeled by
ST,C(ta t) = PF(T > t, C> t) = K(ST(t)a SC(t); Oé)

where S7(t) and Sc(t) are respectively marginal survival
functions of T and C
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Copulas

@ we consider the Archimedean copulas

@ For a,b € [0, 1], copula function K adopts

K(a, b;a) = ¢~ (¢(a; a) + ¢(b; )
where ¢ > 0 is called the generator of K
@ ¢(w) must satisfy

(i) (1) = 0; and

(ii) ¢(w): convex and decreasing
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@ Some examples of Archimedean copulas

(i) Independent copula K(a, b) = ab
(ii) Clayton copula: ¢(a) =a=*—1fora>1
(iii) Gumbel-Hougaard copula: ¢(a) = (— log a)* for a > 1

(iv) Frank copula: ¢(a) = log ((ia__ll)) where —co < a < 0
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@ Some examples of Archimedean copulas

i) Independent copula K(a, b) = ab

(i
(i) Clayton copula: ¢(a) = a1 —1 for a > 1
(iii) Gumbel-Hougaard copula: ¢(a) = (—loga)® for a > 1
(

iv) Frank copula: ¢(a) = log ((Ziajll)) where —oo < ar < 00

Conclusion

ow to generate dependent survival and censoring times in R?
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Copulas

@ Some examples of Archimedean copulas

(i) Independent copula K(a, b) = ab
(i) Clayton copula: ¢(a) = a1 —1 for a > 1
(iii) Gumbel-Hougaard copula: ¢(a) = (—loga)® for a > 1

(iv) Frank copula: ¢(a) = log ((Ziajll)) where —oo < ar < 00

@ How to generate dependent survival and censoring times in R?

@ Use the Frank copula as an example
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Copulas

@ Some examples of Archimedean copulas

(i) Independent copula K(a, b) = ab
(i) Clayton copula: ¢(a) = a1 —1 for a > 1
(iii) Gumbel-Hougaard copula: ¢(a) = (—loga)® for a > 1

(iv) Frank copula: ¢(a) = log ((Ziajl)) where —oo < ar < 00

@ How to generate dependent survival and censoring times in R?
@ Use the Frank copula as an example
e Firstly, (U, V) is obtained by R function “frankCopula’
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Copulas

@ Some examples of Archimedean copulas

i) Independent copula K(a, b) = ab

iii) Gumbel-Hougaard copula: ¢(a) = (—loga)® for a > 1

iv) Frank copula: ¢(a) = log ((Ziajl)) where —oo < ar < 00

(
(i) Clayton copula: ¢(a) = a1 —1 for a > 1
(
(

How to generate dependent survival and censoring times in R?
Use the Frank copula as an example

Firstly, (U, V) is obtained by R function “frankCopula”
Then, (t,c) are generated by t = S7(U), ¢ = SEI(V)
(inversion method)

e 6 o6 o
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Ci = dependent right censoring time and
A; = independent right censoring time
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A; = independent right censoring time
@ Individual / has a record (X,-,A,-T,A,-C,Z,-T), where
A;7 = event indicator
Ajc = dependent censoring indicator
Z; = a vector of p covariate values
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@ We consider the case where some right censoring times are
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Ci = dependent right censoring time and
A; = independent right censoring time
@ Individual / has a record (X,-,A,-T,A,-C,Z,-T), where
A;7 = event indicator
Ajc = dependent censoring indicator
Z; = a vector of p covariate values

Assume Z; is not a function of time t
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Copula based likelihood

@ Let T; = event time for individual i, where i =1,...,n

@ We consider the case where some right censoring times are
dependent on their associated event times
@ Observed survival time: X; = min(T;, C;, A;), where
Ci = dependent right censoring time and
A; = independent right censoring time
@ Individual / has a record (X,-,A,-T,A,-C,Z,-T), where
A;7 = event indicator
Ajc = dependent censoring indicator
Z; = a vector of p covariate values

@ Assume Z; is not a function of time t
@ Let (x;,d;T,d;c) be observed value of (X;, Air, Ajc)
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@ Proportional hazards models for T and C:

)\T(X|Z,') = )\OT(X)eZ’ﬂ

Ac(X|Z,') = )\oc(x)ezid)
where

B, ¢ are regression coefficient vectors, and

Ao7(x), Aoc(x) are baseline hazard functions (nonparametric)
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where
B, ¢ are regression coefficient vectors, and

Conclusion

Ao7(x), Aoc(x) are baseline hazard functions (nonparametric)

@ These are marginal hazard functions
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Copula based likelihood

@ Proportional hazards models for T and C:

)\T(X|Z,') = )\OT(X)eZ’ﬂ
Ac(X|Z;) = )\oc(X)ez"‘i)

where
B, ¢ are regression coefficient vectors, and

Conclusion

Ao7(x), Aoc(x) are baseline hazard functions (nonparametric)

@ These are marginal hazard functions
@ Require A\g7(x) > 0 and Agc(x) >0
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Copula based likelihood

@ Proportional hazards models for T and C:

)\T(X|Z,') = )\OT(X)eziﬁ
Ac(X|Z;) = )\oc(X)ez"‘i)

where
B, ¢ are regression coefficient vectors, and
Ao7(x), Aoc(x) are baseline hazard functions (nonparametric)

These are marginal hazard functions
Require A\g7(x) > 0 and A\gc(x) >0

Main interest is in estimating 3 and Ag7(x)

But estimation of ¢ and A\gc(x) are unavoidable
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Copula based likelihood

o Let Ki(a,b) = ZK2B) i, (a, p) = 2K(2.0)

@ The likelihood based on the observations is

L — H LélT LélC L]- 6IT 51C

where

Lit = fr(xi)K1(ST(xi), Sc(xi))Sa(xi)
Lic = fc(xi)Ka(S7(xi), Sc(xi))Sa(xi)
Lin = fa(xi)K(S7(x:), Sc (%))

Here S+, Sc and S, are survival functions of T, C and A
respectively
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Copula based likelihood

@ The likelihood based on the observations is

n
_ it 1 0ic | 1=biT—dic
L= H LiT LiC LiA
i=1

where

Lir = fr(x)Ki(ST(xi), Sc(xi))Sa(xi)

Lic = fc(xi)Ka(ST(xi), Sc(xi))Sa(xi)

Lia = fa(xi) K(S7(xi), Sc(xi))

Here S+, Sc and S, are survival functions of T, C and A
respectively

@ Note that 74 and S, are not related to parameters of interest
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Copula based likelihood

@ The log likelihood is

I = Z {0itliT + diclic + (1 = i — dic)lia}
i=1

where

lir =log MoT1(x;) + Z;8 — A7 (x;) + log Kl(e*AT(X"), e*AC(X"))
lic = log Aoc(xi) + Zip — Nc(xi) + log Ka(e 70, el
lia = log K(e‘AT(X’), e_AC(X"))

Ar(xi) = /\OT(X,-)ez"B and Ac(x;) = /\oc(x,-)ez‘¢
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e Estimating \o7(t) and Agc(t) are ill-conditioned as they are
infinite dimensional parameters
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Copula based likelihood

e Estimating A\g7(t) and Agc(t) are ill-conditioned as they are
infinite dimensional parameters

@ Approximations:

Aot (t Zeuwu
Aoc(t Zwu

¥,(t) > 0 are basis functions; they can be

(a) indicator functions = piecewise const Ag7(t) and Aoc(t));
(b) M-splines;

(c) normal density functions; etc
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Penalized likelihood estimation

@ Let 0 and ~ be respectively vectors for 8, and v,
@ Constrained MPL estimation for 1

- (BTv ¢Ta 0T77T)
~ 3y (o) -

I(n) — h1J(0)

haJ()}
where hy, ho > 0 are smoothing parameters
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Penalized likelihood estimation

@ Let 0 and ~ be respectively vectors for 8, and v,
o Constrained MPL estimation for n = (87, 7,07 ,4T)T

= arg(')fr;% {®(n) =1I(n) — h1J(O) — haJ(v)}

where hy, ho > 0 are smoothing parameters

e J(0) and J(v) are penalty functions

Conclusion
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Penalized likelihood estimation

@ Let 0 and ~ be respectively vectors for 8, and v,
o Constrained MPL estimation for n = (,BT, qu,BT,'yT)T:

= arg(')n;% {®(n) =1I(n) — h1J(O) — haJ(v)}

where hy, ho > 0 are smoothing parameters
e J(0) and J(v) are penalty functions

@ We adopt roughness penalties:
J(0) = / 07 (x)%dx = 0"R@
t
Jr) = [ Medx =Ry
t

Conclusion
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Penalized likelihood estimation

@ A constrained optimization problem
e Why penalty?

(i) to smooth Ag7(t) and Aoc(t);

(i) to make the number and location of knots for basis
functions less important
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Penalized likelihood estimation

@ A constrained optimization problem

@ Why penalty?
(i) to smooth A\g7(t) and Agc(t);
(ii) to make the number and location of knots for basis
functions less important

@ Can we use transformation for 6,,v, > 07 e.g. 0, = al%?

Conclusion
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Penalized likelihood estimation

@ A constrained optimization problem

@ Why penalty?
(i) to smooth A\g7(t) and Agc(t);
(ii) to make the number and location of knots for basis
functions less important

o Can we use transformation for 6,,v, > 07 e.g. 6, = a2?

@ Be careful! Transformations can change a concave function
into a function with multiple maxima!

Conclusion
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Penalized likelihood estimation

@ We developed an alternating algorithm; for each iteration:
(i) update 3 and ¢, then
(i) update 6 and ~

o Let m = (16T7¢T)T and N> = (0T77T)T
o Hence, n = (n],n;)"
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Penalized likelihood estimation

@ We developed an alternating algorithm; for each iteration:
(i) update 3 and ¢, then
(i) update 8 and ~

o Letm; = (BTad’T)T and 7, = (9T7’YT)T

o Hence, n = (n{,n;)"

o KKT conditions:

o0 oo

— =0 and — =0,

9B 0;
od : 0 .
89u_0|f A, >0 and 69u<0|f 0, =0
() )
0 =0 if >0 and 0 <0 if v,=0
Oy 0V

forj=1,...,pandu=1,....m
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Penalized likelihood estimation

o Let n(K) be the estimate of 7 at iteration k
o At iter. k+ 1, first update 17; by Newton (or Gauss-Newton)

(k) k)
) = nl + w{Ys{ (némnz )
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Penalized likelihood estimation

o Let n(K) be the estimate of 7 at iteration k

o At iter. k+ 1, first update n; by Newton (or Gauss-Newton):
(k) (k)
k k Kk 0PN ", n
Y = 0t + wfsf (5771 =

@ Then update n, by the Ml algorithm:

o (k+1) (k)
et 0 4 (g 0(m —m, )

3"72
where
s{9 = diag(sty, )
wgk) and w(k) are line search step sizes assuring

o (Y, nékﬂ) ) > o ) > o(n{) ni)
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@ The MI algorithm is very efficient when m is large

@ It is easy to implement; only demands the first derivative
@ No need to solve a difficult linear system in each iteration
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Penalized likelihood estimation

The MI algorithm is very efficient when m is large
It is easy to implement; only demands the first derivative

No need to solve a difficult linear system in each iteration

Our experience shows it performs well and generally has a
good convergence speed
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Penalized likelihood estimation

The MI algorithm is very efficient when m is large
It is easy to implement; only demands the first derivative

No need to solve a difficult linear system in each iteration

Our experience shows it performs well and generally has a
good convergence speed

@ The rational of this algorithm is that it solves the KKT
conditions efficiently
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Penalized likelihood estimation

The MI algorithm is very efficient when m is large
It is easy to implement; only demands the first derivative

No need to solve a difficult linear system in each iteration

Our experience shows it performs well and generally has a
good convergence speed

@ The rational of this algorithm is that it solves the KKT
conditions efficiently

@ lts convergence properties have been investigated in Chan and
Ma (2012) (IEEE Trans. Image Processing)
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Asymptotic results

° Let §o = (B07¢0’)‘8T( ), A3 (t)) be true parameters, and

t
= (B, 207 (1), Aoc(t)) be MPL estimates
° Let p1n = hin/n, pon = hon/n
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Asymptotic results

o Let £0 = (ﬁo, (bo,)\ +(t ),Agc(t)) be true parameters, and
€= (B b, >\0T( ), Aoc(t)) be MPL estimates.
o Let Hin = hln/naNZn = h2n/n

Theorem

Assume m = nY where 0 < v < 1, and u1, and pz, — 0 as

n— oo Assume Ao7(x) and Aoc(x) have up to r > 1 derivatives.
Then, under certain conditions and when n — oo

© [B—Bol2 = 0 (as.) and [|6 — o2 = 0(a.s.).

Q SUP:c(1) x(n)] |)\0T(t) A7 (t)] — 0 (as.) and
SUPte[x(1),x(n)] |¢0T( ) ¢8T(t)| —0 (3.5).
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Asymptotic results

o Let £0 = (ﬁo, (bo,)\ +(t ),Agc(t)) be true parameters, and
€= (B b, >\0T( ), Aoc(t)) be MPL estimates.
o Let Hin = hln/naNZn = h2n/n

Theorem

Assume m = nY where 0 < v < 1, and u1, and pz, — 0 as

n— oo Assume Ao7(x) and Aoc(x) have up to r > 1 derivatives.
Then, under certain conditions and when n — oo

© [B—Bol2 = 0 (as.) and [|6 — o2 = 0(a.s.).

Q SUP:c(1) x(n)] |)\0T(t) A7 (t)] — 0 (as.) and
SUPte[x(1),x(n)] |¢0T( ) ¢8T(t)| —0 (3.5).

o The results on AJ,(t) and AJ(t) are nonparametric
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@ Asymptotics useful for inferences are obtained with fixed m
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Asymptotic results

@ Asymptotics useful for inferences are obtained with fixed m

@ Need to consider 6, = 0 and ~, = 0; boundary values will
invalid inv(-Hessian) as covariance!

@ Assume: g and r active constraints for @ and ~ respectively



Introduction Example Copulas Likelihood MPL asymptotics Simulations Data Analysis Conclusion

Asymptotic results

@ Asymptotics useful for inferences are obtained with fixed m

@ Need to consider 8, = 0 and ~, = 0; boundary values will
invalid inv(-Hessian) as covariance!

@ Assume: g and r active constraints for 6 and -y respectively

o Let Upp(myp)—q—rx[2(m+p)] D€ matrix to indicate active
constraints
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Asymptotic results

@ Asymptotics useful for inferences are obtained with fixed m

@ Need to consider 8, = 0 and ~, = 0; boundary values will
invalid inv(-Hessian) as covariance!

@ Assume: g and r active constraints for 6 and -y respectively

o Let Upp(myp)—q—rx[2(m+p)] D€ matrix to indicate active
constraints

o Let Go(n) = —n"1E,,8%I(n)/omon"
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Asymptotic results

Asymptotics useful for inferences are obtained with fixed m

Need to consider 8, = 0 and ~, = 0; boundary values will
invalid inv(-Hessian) as covariance!

Assume: g and r active constraints for @ and ~ respectively

Let Up2(m+p)—q—rx[2(m+p)) P Matrix to indicate active
constraints

Let Go(n) = —n"1E,,0%I(n)/Omon™
Let Go(n) ! = U(UTGo(n)U)*UT

Conclusion
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Asymptotic results

@ Let 1 be the true 1 corresponding to the fixed m

Assume m is fixed. Assume i1, and pio, are o(n=1/?). Then
@ The MPL estimator 1) is consistent for n, and,

@ the distribution of \/n(1} — n,) converges, when n — oo, to
N(02(p+m)><17 GO("O)_I)'
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Simulations

@ Used 2 covariates: Z; ~ Bernoulli(0.5) and Z, ~ U(-10, 10)
e Marginal hazards for T and C:
A7(t) = ot (t)exp(—0.5Z; + 0.12)
Ac(t) =

Xoc(t)exp(0.32; + 0.22,)
where \oc(t) = 1/5 and A\o7(t) = 2t/\?
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Simulations

@ Used 2 covariates: Z; ~ Bernoulli(0.5) and Z, ~ U(-10, 10)
@ Marginal hazards for T and C:

)\T(t) = )\OT(t)eXp(—O.521 + 0.122)
Ac(t) = Aoc(t)exp(o.?)zl ar 0.222)

where \oc(t) = 1/5 and A\o7(t) = 2t/\?
@ The simulation involved both dependent and independent
censoring

@ Distribution for the independent censoring time was U(0, 10)
@ Random samples generated using the Frank copula
We used Kendall's 7 = 0.8 and 7 = 0.3
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mp = proportion of events
m. = proportion of dependent censoring

@ For 7 =0.8,\t =2 = {m; = 46%, 7. = 35%};
for 7 =0.8,\ = 3.5 = {m: = 22%, 7. = 48%}
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m. = proportion of dependent censoring
@ For 7 =0.8,\ =2 = {m = 46%, 7. = 35%};
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Simulations

o Let
m; = proportion of events
we = proportion of dependent censoring
@ For 7 =0.8,\ =2 = {m = 46%, 7. = 35%};
for 7 = 0.8, A\t = 3.5 = {7 = 22%, 7. = 48%}
@ For r =03\t =2 = {m = 47%, 7. = 35%}
@ For each simulated data set, we computed the MPL or ML
estimates with an assumed 7 (denoted by 7)
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@ For 7 =0.8,\ =2 = {m = 46%, 7. = 35%};
for 7 = 0.8, A\t = 3.5 = {7 = 22%, 7. = 48%}

@ For r =03\t =2 = {m = 47%, 7. = 35%}

@ For each simulated data set, we computed the MPL or ML
estimates with an assumed 7 (denoted by 7)

@ Ao7(t) and Aoc(t) were approximated by piecewise constant
functions (indicator basis)
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Simulations

o Let
m; = proportion of events
we = proportion of dependent censoring

@ For 7 =0.8,\ =2 = {m = 46%, 7. = 35%};
for 7 = 0.8, A\t = 3.5 = {7 = 22%, 7. = 48%}

@ For r =03\t =2 = {m = 47%, 7. = 35%}

@ For each simulated data set, we computed the MPL or ML
estimates with an assumed 7 (denoted by 7)

@ Ao7(t) and Aoc(t) were approximated by piecewise constant
functions (indicator basis)

@ We applied a single smoothing parameter to all replication
samples
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AIC; each bin contained approximately an equal number of
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Simulations

@ Based on a random selected sample, m chosen by minimizing
AIC; each bin contained approximately an equal number of
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@ Given an m, fixed hp = 0 and selected h; by maximizing the
approximate CV criterion
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Simulations

@ Based on a random selected sample, m chosen by minimizing
AIC; each bin contained approximately an equal number of
observations

@ Given an m, fixed hp = 0 and selected h; by maximizing the
approximate CV criterion

@ We used N = 500 replication samples in the simulation



Simulations

TABLE 1 Summary of simulation results for the maximum penalized likelihood estimates of g and ¢

BIAS SD  AASD MSE CP(95%)
=08, 4 = 2m, = 46%, 7 = 35%)
n =200
[Frank copula and 7 = 0.8]
S 0009 0166 0171 0028 0952
f; 0010 0016 0016 0000 0918
¢ 0053 0191 0197 0039 0944
$, 0002 0024 0024 0001 0938
©= 08,4 = 2r, = 46%. xc = 35%).n = 200
[Frank copula and # = 0.4]
I -0.149 0177 0.196 0.054 0914
f 0035 0018 0019 0002 0568
G 0225 0212 0233 009 0898
¢, 0029 0027 0028 0002 0872
=084 = 2m, = 46%. 7. = 35%).n = 200
[Clayton copula and = 0.5]
B 0048 0174 0176 0033 0940
I =0.007 0017 0.017 0.000  0.930
¢ 0024 0210 0199 0045 0924
¢, —-0.006 0.027 0.024 0.001  0.906
© = 08,4 = 3.5(x, = 22%. x. = 48%).n = 200
[Frank copula and # = 0.8]
I -0.007 0216 0217 0.047  0.962
-0013 0023 0023 0001 089
0017 0182 0187 0033 095
—0008 0021 0022 0000 0924
0.3, 4 = 2(x, 7%, x. = 35%).n = 200
[Frank copula and 7 = 0.3]
B 0046 0192 0195 0039 0940
p; 0010 0020 002 0000 0918
' 0024 0211 0229 0.045  0.970
$, 0006 0027 0026 0001 0928
=03, 4, = 2x, = 47%, 7. = 35%)
200

n
[Frank copula and £ = 0.8]

A 0271 0152 0158 0.096  0.586
b 0013 0016 0.016 0.000  0.872
A -0.276 0152 0.164 0.099  0.614
¢, —0.057 0019 0018 0.004  0.158

BIAS SD  AASD MSE CP(95%)
=08, = 2x, = 46%, 7. = 35%)

n = 1000

[Frank copula and 7 = 0.8]

0012 0073 0075 0005 0954
~0005 0007 0007 0000 0878
0008 0087 0087 0007 0952
~0005 0011 0011 0000 0910

[Independent censoring]

-0.266 0.199 0.221 0.110 0.826

=0.065 0.020 0.022 0.005 0154
0.247 0236 0.251 0.117  0.886
0.037  0.029 0.030 0.002 0814

[Gumbel copula and 7 = 0.8]

0.064 0163 0171 0.031 0932
-0.008 0.016 0.017 0.000 0.938
—0.033 0188 0.196 0.036  0.964
=0.015 0022 0.021 0.001  0.842

[Independent censoring]

-0491 0316 0337 0341  0.730
011 0035 0037 0013 0148
0131 0204 0210 0059 0916
0018 0024 0024 0001 0910

[Independent censoring]

~0053 0215 0216 0049 0946

~0031 0021 002 0001 0706
0.093 0229 0247 0.061 0954
0003 0029 0027 0001 0944

=08, 4 = 2, = 46%, 7 = 35%)

n =200

[Frank copula and 7 = 0.8 Chen's ML]

~0017 0175 0174 0031 0958

~0001 0017 0017 0000 0936
0012 0197 0213 0.039 0915
0004 0025 0027 0001 0879
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Simulations

TABLE 2 Results for the maximum penalized likelihood (MPL) and maximum
likelihood (ML) estimates of A7 (f) assuming Frank copula with 7 = 0.8

t 0.5 1.0 1.5 2.0 2.5 3.0 3.5
MPL

BIAS —-0.092 -0.074 -0.076 -0.110 -0.218 -0.374 —0.605

SD 0.120 0.147 0.145 0.165 0.183 0.196 0.207

AASD  0.065 0.100 0.120 0.145 0.165 0.180 0.192
MSE 0.023 0.027 0.027 0.039 0.081 0.178 0.409

ML
BIAS —0.060 —0.048 -0.040 -0.042 -0.161 -0.210 —0.384
SD 0.212 0.302 0.324 0.393 0.414 0.531 0.562

AASD  0.210 0.245 0.281 0.350 0.396 0.463 0.495
MSE 0.048 0.094 0.107 0.157 0.197 0.326 0.464

Chen's ML
BIAS 18939 9.858 4.967 5.418 6.602 41.14 17.97
SD 19.82 190.4 40.12 31.08 41.33 622.7 137.3

AASD 8355 6.538 6.771 7.184 7.924 10.17 .37
MSE 396.7 36341 1634 9955 1752 389463 19165
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Simulations

(A) MPL with n = 200 (B) ML with n = 200
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@ We analyzed the data by assuming a Frank copula model, and
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@ We analyzed the data by assuming a Frank copula model, and
@ performed a sensitivity analysis, i.e. we fit the model
repeatedly using Kendall's 7 = 0,0.2,0.5,0.8
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Dementia data analysis

@ We analyzed the data by assuming a Frank copula model, and

@ performed a sensitivity analysis, i.e. we fit the model
repeatedly using Kendall's 7 = 0,0.2,0.5,0.8

@ Results based on Clayton or Gumbel copulas are similar
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@ Adopted equal number of observations in each bin
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Results based on Clayton or Gumbel copulas are similar

Adopted equal number of observations in each bin

Used piecewise constant function approximating Aot (t)
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We analyzed the data by assuming a Frank copula model, and

performed a sensitivity analysis, i.e. we fit the model
repeatedly using Kendall's 7 = 0,0.2,0.5,0.8

Results based on Clayton or Gumbel copulas are similar
Adopted equal number of observations in each bin

Used piecewise constant function approximating Aot (t)

AIC gives m = 26 regardless of T
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Dementia data analysis

We analyzed the data by assuming a Frank copula model, and

performed a sensitivity analysis, i.e. we fit the model
repeatedly using Kendall's 7 = 0,0.2,0.5,0.8

Results based on Clayton or Gumbel copulas are similar
Adopted equal number of observations in each bin
Used piecewise constant function approximating Aot (t)
AIC gives m = 26 regardless of T

For 7 =0,0.2,0.5,0.8
optimal h; = 1.2 x 10°,10%,8 x 10%,3 x 10*



Dementia data analysis

(A) Age 5 (B) MMSE at baseline
|
e oo S
- -
(C) SMAF at baseline (D) NPI at baseline
i §
- 1 3
rin_edn H I o ior
O s e @ e e

(E) MMSE changes at 3-mont

(F) SMAF changes at 3-month

i i
o edon - i vim -
e e W ERC
(G) NPI changes at 3-month (H) Benzodiazepines
I : . :
i !
H Lo
e H -
" i i
e g e E
() Antipsychotic ) Living alone
3
L : | |
i 3
; i 3 i
e e T
- -
o




Dementia data analysis
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Conclusions

@ We developed a novel estimation method for Cox proportional
hazard models under dependent censoring using copulas and
penalized likelihood
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can reasonably correctly model dependence between the
failure and censoring times
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Conclusions

@ We developed a novel estimation method for Cox proportional
hazard models under dependent censoring using copulas and
penalized likelihood

@ It can provide quality MPL estimates if the selected copula
can reasonably correctly model dependence between the
failure and censoring times

@ An incorrect copula has less effect than incorrect 7

@ The MPL estimate of baseline hazard usually offers smaller
MSE, as well as much improved interpretations, over its ML
counterpart
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Conclusions

We developed a novel estimation method for Cox proportional
hazard models under dependent censoring using copulas and
penalized likelihood

@ It can provide quality MPL estimates if the selected copula
can reasonably correctly model dependence between the
failure and censoring times

@ An incorrect copula has less effect than incorrect 7

@ The MPL estimate of baseline hazard usually offers smaller
MSE, as well as much improved interpretations, over its ML
counterpart

@ As true 7 is unknown, recommend to conduct a sensitivity
analysis for a range of 7 values



	Introduction
	Example
	Copulas
	Likelihood
	MPL
	asymptotics
	Simulations
	Data Analysis
	Conclusion

