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Clinical trial of drug for treatment of nOH

Neurogenic Orthostatic Hypotension (nOH) is a sudden,
dangerous fall in blood pressure when standing from a sitting
or lying position.

nOH affects patients with Parkinson’s Disease (PD).

xxxxx is a drug for controlling this condition.

Clinical trial of xxxxx for treatment of nOH:

Patients randomised to receive treatment or placebo
n = 197
over 8 weeks
primary endpoint: nOH symptom score
secondary endpoint: self-reported number of falls
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Clinical trial: results
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Clinical trial: results

Treat Control
n 105 92
Mean falls 3.4 8.7

Incidence rate ratio = 0.39
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Clinical trial: results

Treat Control
n 105 92
Mean falls 3.4 8.7

Incidence rate ratio = 0.39

Basic bootstrap 95%CI: IRR=0.39 (0.13 - 0.90)

Fairly convincing evidence of a treatment effect

Modelling dispersion in PiG regression 3 / 1



Clinical trial: results

Initial analysis of number of falls: negative binomial model
Treatment effect not significant
Doesn’t look right
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Clinical trial: results

Initial analysis of number of falls: negative binomial model
Treatment effect not significant
Doesn’t look right

NB model - residuals
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Clinical trial: results (cont’d)
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Clinical trial: results (cont’d)

Looking at data again:
Treat Control

n 105 92
No. falls

Mean 3.4 8.7
Variance 62.0 1388.1
Maximum 49 358

Treatment appears to reduce mean number of falls

Treatment also appears to reduce (dramatically) variance of
falls

We need a model that reflects these features
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Statistical model for number of falls

Candidate distributions for number of falls:

Poisson

compound Poisson:

Negative binomial
Poisson-inverse Gaussian (PiG)
Poisson-generalized inverse Gaussian (Sichel)
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Statistical model for number of falls

Candidate distributions for number of falls:

Poisson

compound Poisson:

Negative binomial
Poisson-inverse Gaussian (PiG)
Poisson-generalized inverse Gaussian (Sichel)

Zero-inflated Poisson/NB models
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Statistical model for number of falls
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Poisson-inverse Gaussian (PiG) distribution

y |λ ∼ Poisson(λ) ⇒ y ∼ PiG(µ, σ)

λ ∼ inverse Gaussian(µ, σ)
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Poisson-inverse Gaussian (PiG) distribution

y |λ ∼ Poisson(λ) ⇒ y ∼ PiG(µ, σ)

λ ∼ inverse Gaussian(µ, σ)

f(y |µ, σ) =
√
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y = 0, 1, 2, . . .

E(y) = µ

V ar(y) = µ(1 + σµ) σ : dispersion parameter
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Poisson-inverse Gaussian (PiG) distribution

y |λ ∼ Poisson(λ) ⇒ y ∼ PiG(µ, σ)

λ ∼ inverse Gaussian(µ, σ)

f(y |µ, σ) =
√
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y = 0, 1, 2, . . .

E(y) = µ

V ar(y) = µ(1 + σµ) σ : dispersion parameter

Kν(x) is a Bessel function.

Poisson is the limiting distribution as σ → 0
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Generalized Additive Models for Location, Scale and Shape

(GAMLSS)

Rigby and Stasinopoulos (2005) introduced Generalized
Additive Models for Location, Scale and Shape (GAMLSS).

Regression models for a wide variety of response distributions

Modeling of mean and up to 3 shape parameters
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Generalized Additive Models for Location, Scale and Shape

(GAMLSS)

Rigby and Stasinopoulos (2005) introduced Generalized
Additive Models for Location, Scale and Shape (GAMLSS).

Regression models for a wide variety of response distributions

Modeling of mean and up to 3 shape parameters

PiG regression:

y ∼ PiG(µ, σ)

log(µ) = xtβ

log(σ) = wtγ
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Statistical model for number of falls

In the analysis of clinical trials, typically only the mean is
modelled.

Model A: treatment effect on mean only
Model B: treatment effect on mean and dispersion
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Statistical model for number of falls

In the analysis of clinical trials, typically only the mean is
modelled.

Model A: treatment effect on mean only
Model B: treatment effect on mean and dispersion

Model A (restricted) Model B (full)
y ∼ PiG(µ, σ) y ∼ PiG(µ, σ)
log µ = β0 + β1x+ log t log µ = β0 + β1x+ log t
log σ = γ0 log σ = γ0 + γ1x
(similar to initial negative

binomial analysis)

x is an indicator variable for treatment
log t is an offset term for treatment duration t.
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Statistical model for number of falls

Model A (restricted) Model B
Parameter estimate s.e. p-value estimate s.e. p-value

β0 -1.779 0.327 <0.001 -1.417 0.541 0.009
β1 -0.322 0.337 0.341 -1.489 0.601 0.014
γ0 2.970 0.380 <0.001 3.461 0.592 <0.001
γ1 - - - -1.667 0.706 0.002
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Statistical model for number of falls

Model A (restricted) Model B
Parameter estimate s.e. p-value estimate s.e. p-value

β0 -1.779 0.327 <0.001 -1.417 0.541 0.009
β1 -0.322 0.337 0.341 -1.489 0.601 0.014
γ0 2.970 0.380 <0.001 3.461 0.592 <0.001
γ1 - - - -1.667 0.706 0.002

β̂1 is sensitive to specification of the model for σ

This is particularly bad in the clinical trials context
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Residuals - full model
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Parameter orthogonality

The notion of parameter orthogonality means, for a two-parameter
distribution f(y |µ, θ) :

E

(
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∂µ ∂θ
log f

)

= 0
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Parameter orthogonality

The notion of parameter orthogonality means, for a two-parameter
distribution f(y |µ, θ) :

E

(

∂2

∂µ ∂θ
log f

)

= 0

The MLEs µ̂ and θ̂ are asymptotically independent

This has advantages for parameter estimation.
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Parameter orthogonality

The notion of parameter orthogonality means, for a two-parameter
distribution f(y |µ, θ) :

E

(

∂2

∂µ ∂θ
log f

)

= 0

The MLEs µ̂ and θ̂ are asymptotically independent

This has advantages for parameter estimation.

Cox and Reid (1987), JRSSB
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Parameter orthogonality

There are several parametrizations of the PiG in the literature.

The (µ, σ) parametrization was first proposed by Dean,
Lawless, and Willmot (1989), and used by Rigby and
Stasinopoulos in GAMLSS

appealing interpretation of σ as a Poisson overdispersion
parameter
but µ and σ are not orthogonal
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Parameter orthogonality

There are several parametrizations of the PiG in the literature.

The (µ, σ) parametrization was first proposed by Dean,
Lawless, and Willmot (1989), and used by Rigby and
Stasinopoulos in GAMLSS

appealing interpretation of σ as a Poisson overdispersion
parameter
but µ and σ are not orthogonal

Stein, Zucchini and Juritz (1987) proposed an orthogonal
parametrization of the PiG:

Retain µ

Set α =
√

1+2µσ

σ

µ and α are orthogonal
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Orthogonal parametrization of PiG (µ, α)
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√
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Orthogonal parametrization of PiG (µ, α)

f(y |µ, α) =
√
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E(y) = µ

V ar(y) = µ

(
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)

V ar(y) has an inverse relationship with α

Poisson is the limiting distribution as α → ∞
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Orthogonal parametrization of PiG (µ, α)

We can specify models for µ and α :

y ∼ PiG(µ, α)

log(µ) = xtβ

log(α) = wtδ
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Orthogonal parametrization of PiG (µ, α)

We can specify models for µ and α :

y ∼ PiG(µ, α)

log(µ) = xtβ

log(α) = wtδ

From orthogonality of µ and α, it follows that

E

(

∂2

∂βj ∂δk
log f

)

= 0

i.e. the elements of β and the elements of δ are orthogonal.
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Orthogonal PiG models for number of falls

Model C (restricted) Model D (full)
y ∼ PiG(µ, α) y ∼ PiG(µ, α)
log µ = β0 + β1x+ log t log µ = β0 + β1x+ log t
log α = δ0 log α = δ0 + δ1x
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Orthogonal PiG models for number of falls

Model C (restricted) Model D (full)
y ∼ PiG(µ, α) y ∼ PiG(µ, α)
log µ = β0 + β1x+ log t log µ = β0 + β1x+ log t
log α = δ0 log α = δ0 + δ1x

Model C Model D
Parameter estimate s.e. p-value estimate s.e. p-value

β0 -0.865 0.632 0.171 -0.870 0.669 0.193
β1 -2.077 0.687 0.003 -2.074 0.714 0.004
δ0 -0.034 0.095 0.720 -0.093 0.124 0.453
δ1 - - - 0.152 0.196 0.438
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Orthogonal PiG models for number of falls

Model C (restricted) Model D (full)
y ∼ PiG(µ, α) y ∼ PiG(µ, α)
log µ = β0 + β1x+ log t log µ = β0 + β1x+ log t
log α = δ0 log α = δ0 + δ1x

Model C Model D
Parameter estimate s.e. p-value estimate s.e. p-value

β0 -0.865 0.632 0.171 -0.870 0.669 0.193
β1 -2.077 0.687 0.003 -2.074 0.714 0.004
δ0 -0.034 0.095 0.720 -0.093 0.124 0.453
δ1 - - - 0.152 0.196 0.438

β̂0, β̂1 robust to specification of model for α

β̂1 highly significant in both models
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Simulation study 1

control group variance = 900

treatment group variance = 40, 50, 60

treatment effect on mean: β1 = -1

Full model Restricted model
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Simulation study 2 : Inference

n = 200, 500, . . . , 1000 β1 = −2

95% confidence intervals for β1 (95%)

Full (i.e. well specified) model for dispersion

Table : Coverage of 95% CI for β1

n gamlss Wald Obs Wald Asym Sand LRT Bootstrap

200 89.1 89.9 89.9 81.4 96.4 86.8
500 91.8 91.9 91.7 87.5 95.9 90.3
1000 93.8 93.6 93.6 89.9 96.2 91.9
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If we use the orthogonal parametrization ...

Can we ignore the dispersion model?

Is there a price to pay for not modelling the dispersion?
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Simulation study 2 (cont’d)

n = 200 β1 = −2

Penalised likelihood ratio confidence intervals for β1 (95%)
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Simulation study 2 (cont’d)

n = 200 β1 = −2

Penalised likelihood ratio confidence intervals for β1 (95%)
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Simulation study 2 (cont’d)

n = 200 β1 = −2

Penalised likelihood ratio confidence intervals for β1 (95%)

Falls data: δ̂1 ≃ 0.15
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Conclusions

When modelling mean and dispersion, we need to consider
parametrization of the response distribution.

In exponential family, the mean µ and exponential dispersion
parameter φ are orthogonal (so GLMs are OK).

Outside exponential family .. beware of non-orthogonal
parametrization
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Conclusions

When modelling mean and dispersion, we need to consider
parametrization of the response distribution.

In exponential family, the mean µ and exponential dispersion
parameter φ are orthogonal (so GLMs are OK).

Outside exponential family .. beware of non-orthogonal
parametrization

RCTs: what exactly do we mean by “treatment effect”?

treatment effect on the mean only

treatment effect on the mean and dispersion

Inference : LRT 95% CI better (may requires proper
modelling of dispersion)
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