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Outline

I Background and motivation
I Regression models for continuously-valued
paired exposure and outcome data

I History
I Conditional estimators
I Binary data (both exposure and outcome)
I Estimators of within-pair e↵ect
I Simulation results
I Extensions
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Paired data

I Twins provide naturally matched pairs for
studies of human health, although paired
data goes beyond just twins.

I We can can exploit within-pair comparisons
of data to avoid confounding associations
between outcomes and exposures by shared
factors.

I Specific assumptions about shared factors
allow the determination of genetic and
environmental contributions to disease risk.
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Twin Studies - 1

I Tradition of focussing on genetic hypotheses
I Decompose variation in a quantitative trait
I Compare within-pair correlation of DZ with
MZ (12 under the additive genetic model)

I
Classical Twin Model assumes that variation
attributable common or shared environment
is the same for DZ and MZ twins

I Lower DZ than MZ within-pair correlation
provides evidence that a trait is determined
by genetic factors

6/ 49



Acknowledgements

Background

Models for
paired data

History

Binary data

Estimation of
regression
parameters

Simulation

Conclusions

References

Twin Studies - 2

I Can the twin context provide greater insight
on associations?

I Cardiovascular risk (blood pressure) with
birthweight

I Cancer risk (breast density) with physical
measures (height, weight, BMI)

I Ideally like to separate the e↵ect of shared
and individual factors (eg maternal versus
placental)

I When can a regression relationship be said
to have a genetic basis?
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Individual twin regression

Exposure variable x

ij

and binary outcome y

ij

for
i = 1, . . . , n and j = 1, 2. A cross-sectional or
individual-level regression model might propose
that

E(y

i1) = ↵ + �x

i1

E(y

i2) = ↵ + �x

i2
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Individual twin regression

E(y

i1) = ↵ + �x

i1

E(y

i2) = ↵ + �x

i2

If we take the di↵erence between the two
equations we get

E(y

i1 � y

i2) = �(x

i1 � x

i2)

If we take the average between the two equations
we get

E(y

i

) = ↵ + �x

i

9/ 49



Acknowledgements

Background

Models for
paired data

History

Binary data

Estimation of
regression
parameters

Simulation

Conclusions

References

Between- and within-pair regression

These are special cases of a model general model

E(y

i1) = �0 + �

w

(x

i1 � x

i

) + �

b

x

i

E(y

i2) = �0 + �

w

(x

i2 � x

i

) + �

b

x

i

where x

i

= (x

i1 + x

i2)/2. Since

x

i1 � x

i

= (x

i1 � x

i2)/2

x

i2 � x

i

= (x

i2 � x

i1)/2

= �(x

i1 � x

i2)/2

we can re-write the multivariable between- and
within-pair model as...
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Between- and within-pair regression

These are special cases of a model general model

E(y

i1) = �0 + �

w

(x

i1 � x

i2) + �

b

x

i

E(y

i2) = �0 + �

w

(x

i2 � x

i1) + �

b

x

i

Univariate regressions of the within-pair
di↵erences and within-pair means yield estimates
of �

w

and �

b

respectively.

Simultaneous estimation of �
w

and �

b

from the
multivariable model generates the same estimates
for OLS and GLS (but standard errors will di↵er).
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Interpretation - 1

I
�

w

is the expected change in the the
outcome y for a unit change in the deviation
of the exposure x from the pair mean,
holding this pair mean constant.

I
�

b

is the expected change in the outcome y

for a unit change in the pair mean x,
holding the within-pair deviation (di↵erence)
constant.
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Illustration of between- and
within-pair e↵ects
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Interpretation - 2

What we are postulating is
I A model for the expected value of the
outcome y can be improved by using data
from pairs.

I A good way to do this is to relate the
expected value of y

i1 not just to x

i1 (the
twin’s own exposure value) but also to their
co-twins exposure value x

i2.
I The expected di↵erence in outcome y

comparing between two x values may
depend on whether we are comparing (i)
co-twins with each other within-pair; or (ii)
unrelated twins between pairs.
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Twin – Co-Twin regression

The multivariable model re-expressed

E(y

i1) = �0 + �

t

x

i1 + �

c

x

i2

E(y

i2) = �0 + �

t

x

i2 + �

c

x

i1

where

�

t

= (�

w

+ �

b

)/2

�

c

= (�

w

� �

b

)/2

from which we can see that �
c

= 0 (E(y

i1) does
not depend on x

i2 and vice versa) is equivalent
to �

w

= �

b

(between- & within-pair reg. e↵ects
are the same).
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Individual twin regression

Recall the individual-level regression model

E(y

i1) = ↵ + �x

i1

E(y

i2) = ↵ + �x

i2

If the multivariable between- and within-pair
regression model is correct, then fitting the
individual-level regression (again, by either OLS
or GLS) produces and estimate of � that is a
weighted average of the corresponding estimates
of �

w

and �

b

with weights that depend on ⇢

x

and
⇢

y

, the observed within-pair correlation of x and
y respectively.
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Weighted average estimates of �

This results first came to my attention through
biostatistics via the seminal paper by Neuhaus
& Kalbfleisch (1998) in Biometrics.

Neuhaus & Kalbfleisch (1998), however, quote
Scott & Holt (1982) in J. Amer. Stat. Assoc., a
paper on two-stage sample surveys.

Scott & Holt (1982) in turn trace the result back
to Maddala (1971) in Econometrica, so we’re
now in economics where the interest at the time
was “pooling cross section and time series data”.
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Weighted average estimates of �

There’s more: Maddala (1971) references this

Wallace TD & Hussain A (1969). The use of
error components models in combining cross
section with time series data. Econometrica, 37,
55–72,

which in turn refers to this

Hildreth C (1950). Combining Cross-Section
Data and Time Series. Cowles Commission
Discussion Paper: Statistics No. 347, May 15,
1950.
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Weighted average estimates of �

This led me to propose Gurrin’s Law: One can
always find a reference to the between- and
within-cluster “beta is weighted average” result
published before one was born regardless of how
old one is!
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Papers by John Neuhaus et al.
I Neuhaus JM & Jewell N (1990). The e↵ect of retrospective

sampling on binary regression models for clustered data.

Biometrics, 46, 977 – 990.

I Neuhaus JM & Kalbfleisch JD (1998). Between- and

within-cluster covariate e↵ect in the analysis of clustered data.

Biometrics, 54, 638 – 645.

I Neuhaus JM & McCulloch CE (2006). Separating between-

and within-cluster covariate e↵ects by using conditional and

partitioning methods. J. R. Statist. Soc. B., 68, 859 – 872.
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Papers on interpretation
I Begg MD & Parides MK (2003). Separation of

individual-level and cluster-level covariate e↵ects in regression

analysis of correlated data. Statistics in Medicine, 22, 2591 –

2602.

I Carlin JB, Gurrin LC, Sterne JAC, Morley R & Dwyer T
(2005). Regression models for twin studies: a critical review.

Int. J. Epidem., 34, 1089 – 1099.

I Dwyer T, Blizzard CL. (2005). A discussion of some

statistical methods for separating within-pair associations

among all twins in research on fetal origins of disease.

Paediatric and Perinatal Epidemiology, 19(1), 48 – 53.

I Gurrin LC, Carlin JB, Sterne JAC, Dite GS & Hopper JL
(2006). Using bivariate models to understand between- and

within-cluster regression coe�cients with application to twin

data. Biometrics, 62, 745 – 751.
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The Sjolander Show
I Sjolander A, Lichtenstein P, Larsson H & Pawitan Y.

(2012). Between-within models for survival analysis. Statistics

in Medicine.

I Sjolander A, Frisell T & Oberg S. (2012). Causal
interpretation of between-within models for twin research.

Epidemiologic Methods, 1(1), No. 10.

I Sjolander A, Johansson ALV, Lundholm C, Altman D,
Almqvist C & Pawitan Y. (2012). Analysis of 1:1 matched

cohort studies and twin studies, with binary exposures and

binary outcomes. Statistical Science, 27(3), 395-411.
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Binary x and y

I We now consider the scenario where both
x

ij

and y

ij

are binary 0/1 variables.
I
x

i1 � x

i

= (x

i1 � x

i2)/2 = �(x

i2 � x

i1)/2

can take only three values: �1
2 , 0 or 1

2 .

I
x

i

can take only three values: 0, 1
2 or 1.

I A pair is exposure-concordant if x
i1 = x

i2,
so x

i

= 0 or x
i

= 1, otherwise it is
exposure-discordant where x

i

=

1
2 .

I A pair is outcome-concordant if y
i1 = y

i2,
otherwise it is outcome-discordant.
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Individual twin regression

Exposure variable x

ij

and binary outcome y

ij

with expectation p

ij

for pair i and individual j.
An ordinary logistic regression model implies:

log

✓
p

ij

1� p

ij

◆
= �0 + �x

ij

So for each pair we have:

log

✓
p

i1

1� p

i1

◆
= �0 + �x

i1

log

✓
p

i2

1� p

i2

◆
= �0 + �x

i2
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Individual twin regression
Within-pair di↵erence in the two regression equations:

log

✓
pi1

1� pi1

◆
� log

✓
pi2

1� pi2

◆
= �(xi1 � xi2)

Average the two regression equations:

1

2


log

✓
pi1

1� pi1

◆
+ log

✓
pi2

1� pi2

◆�
= �0 + �xi

I Both equations depend on the exposure x through
the regression coe�cient �.

I We can, however, generalise to allow the exposure
e↵ect on the within-pair log odds ratio and the
between-pair average log odds to be distinct.
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Between- and within-pair regression
I The model proposed by Neuhaus & Kalbfleisch

(1998) where pij = E(yij) is

log

✓
pij

1� pij

◆
= �0 + �w(xij � x̄i) + �bx̄i

for j = 1, 2 and x̄i = (xi1 + xi2)/2.

I We can also write

log

✓
pij

1� pij

◆
= �0 + �w

1
2(xij � xik) + �bx̄i

where k = (3� j), indicting that this model has
terms for both between- and within-pair regression
e↵ects.
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Paired data in matched studies

I Binary outcome data from individual
matched pairs is typically analysed for
associations with exposures using
conditional logistic regression (CLR).

I CLR uses the likelihood conditional on the
sum of the pair’s outcome (0, 1

2 or 1) to
estimate the regression parameter �.
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Paired data in matched studies

I Pairs that are either outcome-concordant or
exposure-concordant do not contribute to
the conditional likelihood.

I So in an individually matched case-control
study, where y

i1 6= y

i2 by design, only
exposure-discordant pairs contribute to the
estimation of �, an inherently within-pair
regression parameter.
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Paired data in cohort studies

I But what about outcome-concordant twin-
or sib-pairs appearing in cohort studies?

I Can their inclusion improve the precision of
estimation of regression parameters while
still maintaining the benefits of a paired
analysis?
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Paired data in cohort studies

I We know their inclusion does not influence
the results of CLR.

I But what about the multivariable between-
and within-pair regression model?

I What is the relationship between estimates
of � from CLR and estimates of �

w

from
ordinary logistic regression with the
multivariable model?

30/ 49



Acknowledgements

Background

Models for
paired data

History

Binary data

Estimation of
regression
parameters

Simulation

Conclusions

References

Estimation of �
b

and �

w

I Use ordinary logistic regression (OLR) on all pairs to
estimate �0, �w and �b, and take �w as our
association parameter. The OLR estimate of �w

depends on the assumptions for �0 & �b (ie whether
we estimate them or set them to zero).

I Use conditional logistic regression (CLR) on pairs
that are both exposure-discordant and
outcome-discordant (so “doubly-discordant”) pairs to
estimate �w. The CLR model does not have
parameters �0 and �b.

There is a “close empirical correspondence” (Neuhaus &
Kalbfleisch (1998), Ten Have et al. (1995), Sjolander et al.
(2012)) between the OLR and CLR estimates...
...but they are not formally identical.
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Table : Summary of paired binary data for one pair
member exposed and one pair member unexposed

Unexposed
member
(x2 = 0)
Event No event
(y2 = 1) (y2 = 0) Totals

Exposed member
(x1 = 1)
Event (y1 = 1) n11 n10 n11 + n10

No event (y1 = 0) n01 n00 n01 + n00

Totals n11 + n01 n10 + n00

PP
nij
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CLR estimator of �
w

For a single binary exposure the CLR estimate of
�

w

is the log ratio of number of
exposure-outcome concordant pairs (n10) to
exposure-outcome discordant pairs (n01) among
outcome-discordant pairs:

ˆ

�w(CLR) = log(n10/n01)

with standard error

s.e.( ˆ�w(CLR)) =

q
n

�1
10 + n

�1
01 .
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OLR estimators of �
w

: �

b

= �

0

= 0
For OLR there is an addition contribution from
the n11 + n00 exposure-discordant pairs that are
outcome-concordant pairs. For �

b

= �0 = 0

we have

ˆ

�w(OLR, �b = �0 = 0) = 2log

✓
n10 +

1
2(n11 + n00)

n01 +
1
2(n11 + n00)

◆

with s.e.( ˆ�w(OLR), �b = �0 = 0) =

s✓
n10 +

1

2

(n11 + n00)

◆�1

+

✓
n01 +

1

2

(n11 + n00)

◆�1

.
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OLR estimators of �
w

: �

b

6= 0, �
0

6= 0
For x

i

categorical, �
b

and �0 replaced with their
MLE’s we have

ˆ

�w(OLR) = log

✓
n10 + n11

n01 + n11
⇥ n10 + n00

n01 + n00

◆

with s.e.( ˆ�w(OLR))
2
=

(n10 + n11)
�1
+(n01 + n11)

�1
+(n10 + n00)

�1
+(n01 + n00)

�1

where
n = n00 + n01 + n10 + n11.
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OLR estimators of �
w

: General Form

More generally we have ˆ

�

w

=

log


n10

1�↵1/2
+ ↵2(↵3n11 + (1� ↵3)n00)

n01
1�↵1/2

+ ↵2(↵3n11 + (1� ↵3)n00)

�

⇥

n10

1�↵1/2
+ ↵2((1� ↵3)n11 + ↵3n00)

n01
1�↵1/2

+ ↵2((1� ↵3)n11 + ↵3n00)

�

where (↵1,↵2,↵3) =
(1, 0, 0) for CLR;
(0,

1
2 ,

1
2) for OLR with �

b

= �0 = 0; and

(0, 1, 0) for OLR with �

b

=

ˆ

�

b

and �0 =
ˆ

�0.
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Unanswered questions

I The result when �

b

6= 0 and �0 6= 0 is from
Sjolander et al. (Stat. Sci., 2012). They
state “...the decomposition into within- and
between-e↵ects is a legitimate method for
binary exposures, which was questioned by
Carlin et al. (2005)”.

I BUT this result only applies when we model
the mean e↵ect m(x

i

) as

�0I(xi = 0) + �0.5I(xi = 0.5) + �1I(xi = 1)

that is, the mean appears in the regression
equation as a categorical variable.
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Unanswered questions

I In this case only exposure-concordant pairs
contribute to estimating �

w

, so it’s not
much of a “decomposition into within- and
between-e↵ects”.

I Explicit results for x
i

as a continuously
valued exposure (albeit with only three
possible values) are not available, but one
can show the precision of ˆ

�

w

is (slightly)
greater than for the above categorical
model.
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Simulation: �

0

= �

b

= 0, �
w

= 1

Table : Summary of simulation results for 100 datasets
with 500 twin pairs. True values are �0 = 0, �b = 0,
�w = 1. z ⇠ N(0, �2

) with between- and within-pair std
dev � = 2. The observed binary covariate is x = I(z > 0).

Mean Empirical Model
Estimate Std Err Std Err

CLR 0.98 0.25 0.28
OLR 0.96 0.24 0.26
(�

b

= �0 = 0)
OLR 0.97 0.24 0.26
(�

b

=

ˆ

�

b

, �0 = ˆ

�0)

39/ 49



Acknowledgements

Background

Models for
paired data

History

Binary data

Estimation of
regression
parameters

Simulation

Conclusions

References

Simulation: �

0

= 0, �
b

= �

w

= 1

Table : Summary of simulation results for 100 datasets
with 500 twin pairs. True values are �0 = 0, �b = 1,
�w = 1. z ⇠ N(0, �2

) with between- and within-pair std
dev � = 2. The observed binary covariate is x = I(z > 0).

Mean Empirical Model
Estimate Std Err Std Err

CLR 1.02 0.28 0.29
OLR 0.92 0.24 0.26
(�

b

= �0 = 0)
OLR 0.99 0.26 0.27
(�

b

=

ˆ

�

b

, �0 = ˆ

�0)
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Conclusions

I CLR and OLR estimators of the within-pair
regression e↵ect are specific examples of a
general estimator that assigns weights to
count data from outcome-concordant
exposure-discordant pairs.

I OLR estimators are potentially more
e�cient than CLR estimators since they use
data from all exposure-concordant pairs,
rather than just those that are
outcome-discordant, an assertion that is
born out by our simulation studies.
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Extension 1: Two time-points

Let y
ijk

(x
ijk

) be the outcome (exposure) at
time k = 1, 2 for the j

th twin in the i

th twin pair.

Then we can decompose x

ijk

as using a two-way
analysis of variance

x

ijk

= 0.5(x

ijk

� x

ij.

) + 0.5(x

ijk

� x

i.k

)

+0.5(x

ij.

� x

i..

) + 0.5(x

i.k

� x

i..

)

+x

i..
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Extension 2: Count data

Between- and within-pair e↵ects for Poisson
regression of count outcomes. The
unconditional estimate (OPR?) of �

w

is the
di↵erence in the log of the mean count between
exposed and unexposed.

The conditional estimate (CPR?) of �
w

is
(approximately) the log of the mean di↵erence in
counts d between exposed and unexposed (if
d > 0). More formally

exp(

ˆ

�

w

) = d/2 +

q
(d/2)

2
+ 1

so exp(

ˆ

�

w

) > 0 even if d < 0.
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Graph 1
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model (1)   βC = -0.4 
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Graph 2

2 

model (2a)  βW = -0.8,  βB = 0 
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Graph 3

3 

model (2b)  βW = 0,  βB = -0.4 
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Graph 4

4 

model (2c)   βW = -0.8,  βB = -0.4 
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