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Personalized Medicine

Believed by many as the future of medicine ...

Source: http://www.personalizedmedicine.com/

Often refers to tailoring by genetic profile, but it’s also common to personalize based
on more “macro” level characteristics, some of which are time-varying



Personalized Medicine

Paradigm shift from “one size fits all” to individualized, patient-centric care

– Can address inherent heterogeneity across patients

– Can also address variability within patient, over time

– Can increase patient compliance, thus increasing the chance of treatment success

– Likely to reduce the overall cost of health care

Overarching Methodological Questions:

– How to decide on the optimal treatment for an individual patient?

– How to make these treatment decisions evidence-based or data-driven?
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Dynamic Treatment Regimens (Regimes): An Overview

Dynamic Treatment Regimens (DTRs)

DTRs offer a framework to operationalize personalized medicine in a
time-varying setting

– Clinical decision support systems for treating chronic diseases

A DTR is a sequence of decision rules

– Each decision rule takes a patient’s treatment and covariate history as inputs, and
outputs a recommended treatment

A DTR is called optimal if it optimizes the long-term mean outcome (or some
other suitable criterion)
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ADHD Example: One Simple DTR

BMOD: Behavioral Modification Therapy; MEDS: Medication

“Give Low-intensity BMOD as initial treatment; if the subject responds, then
continue BMOD, otherwise prescribe BMOD + MEDS”



Dynamic Treatment Regimens (Regimes): An Overview

ADHD Example: One Not-so-simple DTR

Stage-1 Rule: “If the baseline level of impairment is greater than a threshold
(say, ψ), prescribe MEDS; otherwise prescribe BMOD”

Stage-2 Rule: “If the subject is a responder to initial treatment, continue the
same treatment; if non-responder, prescribe BMOD + MEDS”

How to specify ψ?
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Dynamic Treatment Regimens (Regimes): An Overview

The Big Scientific Questions in DTR Research

What would be the mean outcome if the population were to follow a particular
pre-conceived DTR?

How do the mean outcomes compare among two or more DTRs?

What is the optimal DTR in terms of the mean outcome?

– What is the best sequencing of treatments?

– What are the best timings of alterations in treatments?

– How do we best personalize the sequence of treatments? i.e. What individual
information (tailoring variables) do we use to make these decisions?
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Dynamic Treatment Regimens (Regimes): An Overview

The Big Statistical Questions

1 What is the right kind of data for comparing two or more DTRs, or estimating
optimal DTRs? What is the appropriate study design?

– Sequential Multiple Assignment Randomized Trial (SMART)

2 How can we compare pre-conceived, embedded DTRs?
– primary analysis of SMART data

3 How can we estimate the “optimal” DTR for a given patient?

– secondary analysis of SMART data
– e.g. Q-learning, a stagewise regression-based approach
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Dynamic Treatment Regimens (Regimes): An Overview

Data Structure

K stages on a single patient:

O1,A1, . . . ,OK ,AK ,OK+1

Oj : Observation (pre-treatment) at the j-th stage
Aj : Treatment (action) at the j-th stage, Aj ∈ Aj

Hj : History at the j-th stage,Hj = {O1,A1, . . . ,Oj−1,Aj−1,Oj}
Y : Primary Outcome (larger is better)

A DTR is a sequence of decision rules:

d ≡ (d1, . . . , dK) with dj(hj) ∈ Aj

For simplicity, restrict attention to K = 2 and Aj = {−1, 1}
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Data Sources

Data from longitudinal observational studies have been widely used in the DTR
context

– This includes electronic medical records data

– Usual concerns about observational data, e.g. confounding and other hidden biases
(Rubin, 1974; Rosenbaum, 1991)

– Need unverifiable assumptions to make causal inference about treatment effects

– Analysis is more complex (Robins et al., 2008; Moodie, Chakraborty and Kramer,
2012)

Better quality Data for estimating optimal DTRs can come from Sequential
Multiple Assignment Randomized Trials (SMARTs) (Lavori and Dawson, 2004;
Murphy, 2005)

In this talk, we will be dealing with SMART data only
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Sequential Multiple Assignment Randomized Trial (SMART) Design

Sequential Multiple Assignment Randomized Trial
(SMART)

Multi-stage trials with a goal to inform the development of DTRs

Same subjects participate throughout (they are followed through stages of
treatment)

Each stage corresponds to a treatment decision

At each stage the patient is randomized to one of the available treatment options

Treatment options at randomization may be restricted on ethical grounds,
depending on intermediate outcome and/or treatment history
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Sequential Multiple Assignment Randomized Trial (SMART) Design

Examples of SMART Studies

Schizophrenia: CATIE (Schneider et al., 2001)

Depression: STAR*D (Rush et al., 2003)

ADHD: Pellham et al. (see, e.g., Lei et al., 2012)

Prostate Cancer: Trials at MD Anderson Cancer Center (e.g., Thall et al., 2000)

Leukemia: CALGB Protocol 8923 (see, e.g., Wahed and Tsiatis, 2004)

Smoking: Project Quit (Strecher et al., 2008)

Alcohol Dependence: Oslin et al. (see, e.g., Lei et al., 2012)

Recent examples at the Methodology Center, Pennsylvania State University website:
http://methodology.psu.edu/ra/smart/projects
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A SMART Design in Children with ADHD

Primary Outcome: Teacher-rated Impairment Rating Scale (TIRS)



Sequential Multiple Assignment Randomized Trial (SMART) Design

SMART Design Principles

Primary and Secondary Hypotheses

Choose scientifically important primary hypotheses that also aid in developing
DTRs

– Power trial to address these hypotheses

Depending on the research question, the primary analysis can be a comparison of
two or more means (or, proportions) corresponding to two or more DTRs
embedded in the SMART, or components thereof

Choose secondary hypotheses that further develop the DTR, and use
randomization to eliminate confounding

– Trial is not necessarily powered to address these hypotheses

– Still better than post hoc observational analyses

– Underpowered randomizations can be viewed as pilot studies for future full-blown
comparisons
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Sequential Multiple Assignment Randomized Trial (SMART) Design

Primary Hypothesis and Sample Size: Scenario 1

Hypothesize that averaging over the secondary treatments, the initial treatment
BMOD is as good as the initial treatment MEDS

– Sample size formula is same as that for a two group comparison
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Sequential Multiple Assignment Randomized Trial (SMART) Design

Primary Hypothesis and Sample Size: Scenario 2

Hypothesize that among non-responders a treatment augmentation (BMOD+MEDS)
is as good as an intensification of treatment

– Sample size formula is same as that for a two group comparison of
non-responders (overall sample size depends on the presumed non-response rate)
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Sequential Multiple Assignment Randomized Trial (SMART) Design

Primary Hypothesis and Sample Size: Scenario 3

Hypothesize that the “red” DTR is as good as the “green” DTR
– Sample size formula involves a two group comparison of “weighted” means

(overall sample size depends on the presumed non-response rate)
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Sample Size Requirements
Assume continuous outcome, e.g., TIRS in case of ADHD

Key Parameters:

Effect Size = ∆µ
σ (Cohen’s d)

Type I Error Rate = α = 0.05
Desired Power = 1− β = 0.8

Initial Response Rate = γ = 0.5

Trial Size:

Effect Size Scenario 1 Scenario 2 Scenario 3

0.3 N1 = 350 N2 = N1
(1−γ) = 700 N3 = N1 × (2− γ) = 525

0.5 N1 = 128 N2 = N1
(1−γ) = 256 N3 = N1 × (2− γ) = 192

0.8 N1 = 52 N2 = N1
(1−γ) = 104 N3 = N1 × (2− γ) = 78
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Estimation of Optimal DTRs via Q-learning

Q-learning: A Secondary Analysis of SMART Data

How to estimate the optimal DTR for an individual patient?

Q-learning (Watkins, 1989)

– A popular method from Reinforcement (Machine) Learning

– A generalization of least squares regression to multistage decision problems
(Murphy, 2005)

– Implemented in the DTR context with several variations (Zhao et al., 2009;
Chakraborty et al., 2010; Schulte et al., 2012; Song et al., 2014)

– We developed an R package called qLearn (Xin et al., 2012) that conducts
Q-learning (Freely available at CRAN):

http://cran.r-project.org/web/packages/qLearn/

The intuition comes from dynamic programming (Bellman, 1957) in case the
multivariate distribution of the data is known

– Q-learning is an approximate dynamic programming approach
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Estimation of Optimal DTRs via Q-learning

Motivation for Q-learning

Move backward in time to take care of the delayed effects

Define the “Quality of treatment”, Q-functions:

Q2(h2, a2) = E
[
Y
∣∣∣H2 = h2,A2 = a2

]
Q1(h1, a1) = E

[
max

a2
Q2(H2, a2)︸ ︷︷ ︸

delayed effect

∣∣∣H1 = h1,A1 = a1

]

Optimal DTR:

dj(hj) = arg max
aj

Qj(hj, aj), j = 1, 2

When the true Q-functions are not known, one needs to estimate them from data,
using regression models ...
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Q-learning with Linear Regression (K = 2)
Regression models for Q-functions:

Qj(Hj,Aj;βj, ψj) = βT
j Hj + (ψT

j Hj)Aj, j = 1, 2,

At stage 2, regress Y on (H2, H2A2) to obtain (β̂2, ψ̂2)

Construct stage-1 Pseudo-outcome:

Ỹ1i = max
a2

Q2(H2i, a2; β̂2, ψ̂2), i = 1, . . . , n

At stage 1, regress Ỹ1 on (H1, H1A1) to obtain (β̂1, ψ̂1)

Estimated Optimal DTR:

d̂j(hj) = arg max
aj

Qj(hj, aj; β̂j, ψ̂j) = sign(ψ̂T
j hj)



Why move through stages as in Q-learning? Why not run an
“all-at-once” multivariable regression?

Berkson’s Paradox or Collider-stratification Bias: There may be non-causal association(s) even
with randomized data, leading to biased stage-1 effects (Berkson, 1946; Greenland, 2003;

Murphy, 2005; Chakraborty, 2011)
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Non-regular Inference for Parameters indexing Optimal DTRs

Inference for Optimal Regimen Parameters

dj(hj) = sign(ψT
j hj)

“Regimen parameters” ψj – parameters that index the decision rules

– Reduce the number of variables on which data must be collected for future
implementations of the DTR

– Know when there is insufficient evidence in the data to recommend one treatment
over another – choose treatment based on cost, familiarity, preference etc.

Inference for the optimal regimen parameters based on Q-learning has been a
topic of active research for last 10 years (Robins, 2004; Moodie and Richardson,
2010; Chakraborty et al., 2010; 2013; Laber et al., 2014; Song et al., 2014)
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Non-regular Inference for Parameters indexing Optimal DTRs

Non-regularity in Inference for ψ1 (K = 2)

Ỹ1i = maxa2 Q2(H2i, a2; β̂2, ψ̂2) = β̂T
2 H2i + |ψ̂T

2 H2i|

Due to the non-differentiability of Ỹ1i, the asymptotic distribution of ψ̂1 does not
converge uniformly over the parameter space – non-regular (Robins, 2004; Laber
et al., 2014)

– It is problematic if p > 0, where p def
= P[ψT

2 H2 = 0]

– The problem persists even when |ψT
2 H2| is “small” with non-zero probability (“local

asymptotics”; Laber et al., 2011, 2014)

Practical consequence: Both Wald type CIs and standard bootstrap CIs perform
poorly (Robins, 2004; Moodie and Richardson, 2010; Chakraborty et al., 2010)

In a K-stage setting, the same issues arise for all ψk, k = K − 1, . . . , 1
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Non-regular Inference for Parameters indexing Optimal DTRs Adaptive m-out-of-n Bootstrap

m-out-of-n Bootstrap: A Feasible Solution

m-out-of-n bootstrap is a tool for remedying bootstrap inconsistency due to
non-smoothness (Shao, 1994; Bickel et al., 1997)

Efron’s nonparametric bootstrap with a smaller resample size, m = o(n)

Choice of m has always been difficult – resulting in a historical lack of popularity
of the approach

We developed a choice of m for the regime parameters in the context of
Q-learning – adaptive to the degree of non-regularity present in the data1

1Chakraborty B, Laber EB, and Zhao Y (2013). Inference for optimal dynamic treatment regimes using
an adaptive m-out-of-n bootstrap scheme. Biometrics, 69: 714 - 723.
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Non-regular Inference for Parameters indexing Optimal DTRs Adaptive m-out-of-n Bootstrap

Our Approach

Key idea: Since non-regularity arises when p > 0, an adaptive choice of m
should depend on an estimate of p

Consider a class of resample sizes: m = n
1+α(1−p)

1+α , where α > 0 is a tuning
parameter

Estimate p by “pre-test” of ψT
2 H2 = 0 for fixed H2 over the training data set:

p̂ =
1
n

n∑
i=1

I

{
n(ψ̂T

2 H2,i)
2

HT
2,iΣ̂2H2,i

≤ χ2
1,1−ν

}

Plug in p̂ for p in the above formula for m to get: m̂ = n
1+α(1−p̂)

1+α
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Non-regular Inference for Parameters indexing Optimal DTRs Adaptive m-out-of-n Bootstrap

Implementation

α can be chosen in a data-driven way via double-bootstrapping (Davison and
Hinkley, 1997)

R package qLearn: http://cran.r-project.org/web/packages/qLearn/

Constructing one CI via double bootstrap takes about 3 minutes on a machine
with dual core 2.53 GHz processor and 4GB RAM
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Inference for ψ10: Simulation Design

A Simple Class of Generative Models

O1,A1,A2 ∈ {−1, 1} with probability 0.5

O2 ∈ {−1, 1} with P[O2 = 1|O1,A1] =
exp(δ1O1 + δ2A1)

1 + exp(δ1O1 + δ2A1)

Y|· ∼ N(γ1 + γ2O1 + γ3A1 + γ4O1A1 + γ5A2 + γ6O2A2 + γ7A1A2, 1)

Analysis Model:

Q2 = β20 + β21O1 + β22A1 + β23O1A1 + (ψ20 + ψ21O2 + ψ22A1)︸ ︷︷ ︸
ψT

2 S2

A2

Q1 = β10 + β11O1 + (ψ10 + ψ11O1)A1

The size of the stage-2 treatment effect ψT
2 S2 determines the extent of nonregularity, e.g.

p = P[ψT
2 S2 = 0]



Non-regular Inference for Parameters indexing Optimal DTRs Simulation Study

Inference for ψ10: Simulation Design

Example Generative Models2

Example γT δT Type p
1 (0, 0, 0, 0, 0, 0, 0) (0.5, 0.5) NR 1
2 (0, 0, 0, 0, 0.01, 0, 0) (0.5, 0.5) NNR 0
3 (0, 0,−0.5, 0, 0.5, 0, 0.5) (0.5, 0.5) NR 0.5
4 (0, 0,−0.5, 0, 0.5, 0, 0.49) (0.5, 0.5) NNR 0
5 (0, 0,−0.5, 0, 1.0, 0.5, 0.5) (1.0, 0.0) NR 0.25
6 (0, 0,−0.5, 0, 0.25, 0.5, 0.5) (0.1, 0.1) R 0
7 (0, 0,−0.25, 0, 0.75, 0.5, 0.5) (0.1, 0.1) R 0
8 (0, 0, 0, 0, 0.25, 0, 0.25) (0, 0) NR 0.5
9 (0, 0, 0, 0, 0.25, 0, 0.24) (0, 0) NNR 0

2Ex. 1 – 6 taken from Chakraborty et al. (2010), and Ex. 7 – 9 taken from Laber et al. (2014)
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Non-regular Inference for Parameters indexing Optimal DTRs Simulation Study

Inference for ψ10: Simulation Design

Focus on the 95% nominal CI for the stage-1 treatment effect parameter ψ10

Compare Monte Carlo estimates of coverage and mean width of
– n-out-of-n bootstrap (usual)
– m-out-of-n bootstrap

1000 simulated data sets, each of size n = 300

1000 bootstrap replications to construct CIs
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Non-regular Inference for Parameters indexing Optimal DTRs Simulation Study

Coverage and Mean Width of the 95% nominal CI for ψ10

Table : Coverage Rates (color-coded as under-coverage, nominal coverage)

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

Ex. 8
NR

Ex. 9
NNR

n-out-of-n 0.936 0.932 0.928 0.921 0.933 0.931 0.944 0.925 0.922
m-out-of-n 0.964 0.964 0.953 0.950 0.939 0.947 0.944 0.955 0.960

Table : Mean Width of CIs

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

Ex. 8
NR

Ex. 9
NNR

n-out-of-n 0.269 0.269 0.300 0.300 0.320 0.309 0.314 0.299 0.299
m-out-of-n 0.331 0.331 0.321 0.323 0.330 0.336 0.322 0.328 0.328
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Analysis of Data from STAR*D, A SMART Study on Depression

STAR*D Study (Vastly Simplified Version)

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) (Fava et al.,
2003; Rush et al., 2004) – one of the earliest SMART designs

Only non-responders move to the next stage and get re-randomized, but the
responders move to a naturalistic follow-up phase with no new treatment (exit
study)

At each stage, treatment is binarized, SSRI (+1) or non-SSRI (−1)3

Symptom severity was measured by Quick Inventory of Depressive
Symptomatology (QIDS) score

We consider −QIDS as the outcome (goal is to maximize)

Covariates and/or tailoring variables (as in Pineau et al., 2007): preference
(switch vs. augment), QIDS.start, QIDS.slope

3SSRI = Selective Serotonin Reuptake Inhibitor
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STAR*D Design (Simplified)



Analysis of Data from STAR*D, A SMART Study on Depression

STAR*D Study: Clinical Research Questions

Based on the data from STAR*D study, how can we recommend optimal
treatment sequences (in terms of SSRI vs. non-SSRI) for a future patient with
known values of preference (switch vs. augment), QIDS.start and QIDS.slope,
so as to achieve greatest reduction in symptom severity (e.g. QIDS score)?

– This is about point estimation of the optimal DTR

What measures of uncertainty, if any, can we attach to the treatment
recommendations?

– This is about inference on the the optimal DTR
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Analysis of Data from STAR*D, A SMART Study on Depression

STAR*D Study: Simpler Analysis

The two Q-functions are of the form:

Q2 = β02 + β12QIDS.start2 + β22QIDS.slope2 + β32Preference2 + β42A1

+
(
ψ02 + ψ12QIDS.start2 + ψ22QIDS.slope2

)
A2

Q1 = β01 + β11QIDS.start1 + β21QIDS.slope1 + β31Preference1

+
(
ψ01 + ψ11QIDS.start1 + ψ21QIDS.slope1 + ψ31Preference1

)
A1

Thus the optimal decision rules are of the form:

d2(H2) = sign(ψ02 + ψ12QIDS.start2 + ψ22QIDS.slope2)

d1(H1) = sign(ψ01 + ψ11QIDS.start1 + ψ21QIDS.slope1 + ψ31Preference1)
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STAR*D Analysis Results

Parameter Variable Estimate 90% m-out-of-n bootstrap CI

Stage 2 (n = 327;m = n)
β02 Intercept2 −1.36 (−3.41, 0.65)
β12 QIDS.start2 −0.73∗ (−0.88, −0.57)
β22 QIDS.slope2 0.88 (−0.04, 1.84)
β32 Preference2 0.66∗ (0.12, 1.25)
β42 Treatment1 0.20 (−0.29, 0.75)
ψ02 Treatment2 −0.51 (−2.58, 1.50)
ψ12 Treatment2 × QIDS.start2 0.02 (−0.14, 0.18)
ψ22 Treatment2 × QIDS.slope2 −0.30 (−1.17, 0.64)

Stage 1 (n = 1260;m = m̂ = 910)
β01 Intercept1 −0.93 (−4.76, 1.64)
β11 QIDS.start1 −1.12∗ (−1.32, −0.93)
β21 QIDS.slope1 0.34 (−0.55, 1.20)
β31 Preference1 1.65∗ (0.63, 2.60)
ψ01 Treatment1 −0.93 (−3.22, 1.48)
ψ11 Treatment1 × QIDS.start1 0.01 (−0.14, 0.15)
ψ21 Treatment1 × QIDS.slope1 0.04 (−0.92, 0.89)
ψ31 Treatment1 × Preference1 −1.23∗ (−2.17, −0.29)
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Discussion

From SMART to SMART-AR

SMART is different from usual adaptive trial wherein the design elements (e.g.,
randomization probabilities) can change during the course of the trial

– Within-subject vs. between-subject adaptation

Combination of the two concepts is a topic of current research

– SMARTs can be made more ethically appealing by incorporating adaptive
randomization or sequential elimination

– In certain modern contexts (e.g., implementation research and mHealth), SMART
with Adaptive Randomization (SMART-AR)4 has been developed recently

– In general, how best to do this is not known yet

4Cheung YK, Chakraborty B, and Davidson K (2014). Sequential multiple assignment randomized trial
(SMART) with adaptive randomization for quality improvement in depression treatment program.
Biometrics, DOI: 10.1111/biom.12258.
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Discussion

Summary

DTRs offer a framework for operationalizing, and thus potentially improving,
adaptive clinical practice for chronic diseases

SMART designs are useful for comparing pre-conceived DTRs, as well as
generating high quality data that can aid in constructing optimal DTRs

– Sample size formulae are available for hypotheses involving components of DTR, as
well as entire DTRs, for continuous (and binary) outcomes, as illustrated (Oetting et
al., 2011)

– Sample size formulae are also available for survival outcomes (Li and Murphy,
2011)

A stage-wise regression-based approach called Q-learning can be used for
secondary analysis of SMART data to construct evidence-based optimal DTRs
for specific patient subgroups
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Discussion

At least in case of SMARTs, regular settings (in which treatment effects are “too
different”) are much less likely to occur than non-regular settings, due to clinical
equipoise (Freedman, 1987)

– Hence any method of inference in the DTR context should deal with non-regularity
seriously

We have proposed an adaptive m-out-of-n bootstrap scheme for constructing CIs
for the optimal regimen parameters

– The procedure is consistent, and successfully adapts to the degree of non-regularity
present in the data

– It is conceptually simple, likely to be palatable to practitioners

– We have developed an R package to facilitate wide dissemination

Extending the m-out-of-n bootstrap procedure to settings with more stages and
more treatment choices per stage is conceptually not too problematic, but can be
operationally messy





Shoot your questions, comments, criticisms, and collaboration request to:
bibhas.chakraborty@duke-nus.edu.sg
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