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“Understanding our world requires conceptualizing  
the similarities and differences between the entities  
that compose it” 

Robert Tryon and Daniel Bailey, 1970 
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How does BMI change with age? 

National Longitudinal Study of Youth (NLSY) from 1979 - 2008. 
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How does BMI change with age? 

National Longitudinal Study of Youth (NLSY) from 1979 - 2008. 
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Typical Longitudinal Analysis 

•  Use Generalized Estimating Equations (GEE) to estimate the mean  
    outcome, and how it changes over time, adjusting for covariates 

  regression parameter estimation is consistent despite potential  
    covariance misspecification 
  efficiency can be gained through use of a more appropriate  
     working correlation structure 
  robust (sandwich) standard error estimators available  

•  But, with a heterogeneous population,  
  BMI does not change much for some people as they age 
  BMI changes considerably for some people as they age 

•  We don’t wish to average out these separate trajectories by  
     modeling the mean over time 
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Finite Mixture Models 

•  Data for n individuals:                                              measured at times 

•  We assume K latent trajectories in the population that are distributed 
     with frequencies:                         where               and                         .  

•  The (conditional) mixture density is                                   , a multivariate  

     Gaussian with mean           and covariance         . 

•  In most trajectory software, (conditional) independence is assumed 
     as a working correlations structure:      

⇡1, . . . ,⇡K

⌃k

(⌃k = �2
kI).

yi = (yi1, . . . ,yim)

f(y|t, ✓) = ⇡1f(y|t, �1,⌃1) + · · · + ⇡Kf(y|t, �K,⌃K)
⇡k > 0 ⌃K

k=1⇡k = 1

f(y|t, �k,⌃k)
µk

ti = (ti1, . . . , timi)

✓ = (⇡1, . . . ,⇡K ;�1, . . . ,�K ; ⌃1, . . . ,⌃K)
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Finite Mixture Models 

•  The mean vector         is related to the observation times as follows: 

  Linear:   

  Quadratic: 

  Splines in observation times 

where the regression model (and coefficients) are assumed the same  
for each cluster, and       is the jth observation for the ith individual 
where   

µk

(µk)j = �0 + �1tij

(µk)j = �0 + �1tij + �2t
2
ij

tij
1  j  mi
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Finite Mixture Models 

•   Group membership:   ⇡k =
exp(�kz)

⌃K
j=1exp(�jz)

Z is set of same or different covariates 

This expands    to include the      s also ✓ �
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Estimation for Mixture Models 

•  Maximum likelihood estimation for θ  via the 
EM algorithm 

•    K  is pre-specified; can be chosen using the BIC 

•    Parameter estimators are not consistent under covariance misspecification 
    (White, 1982; Heggeseth and Jewell, 2013). 

•    Robust (sandwich) standard error estimators are available.  

•    How bad can the bias in  regression estimators be? What influences its size? 
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Mispecified Covariance Structure 
Bias and Separation of Trajectories 

•  Separated components lead to little bias even when you wrongly 
     assume independence. 

Black dashed --  true means, Solid lines – estimated means 

ŜEI(�01) = 0.02, ŜER(�01) = 0.06 ŜEI(�01) = 0.01, ŜER(�01) = 0.01
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Mispecified Covariance Structure 
Bias and Level of Dependence 

•  Components with little dependence lead to small bias 
     even when you wrongly assume independence. 

Black dashed --  true means, Solid lines – estimated means 

ŜEI(�01) = 0.02, ŜER(�01) = 0.06 ŜEI(�01) = 0.03, ŜER(�01) = 0.04
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NLSY Data Analysis 

Covariance makes a difference to the trajectories 
    hard to estimate bias from mispecified covariance 
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How Do We Group These Blocks? 
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Group by Color 
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Group by Shape 
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How Do We Group These Blocks? 



19 

Group by Color or Shape 
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How Do We Group These  
(Regression) Lines? 
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Group by Intercept 
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Group by Level 
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Group by Shape (Slope) 
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Simulated Data 
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Simulated Data 

How could we group these individuals? 
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Real Longitudinal Data 
•    Center for the Health Assessment of Assessment of Mothers and Children of 
Salinas (CHAMACOS) Study 

    In 1999-2000, enrolled 601 pregnant women in agricultural Salinas  
     Valley, CA. 

    Mostly Hispanic, agricultural workers. 

    Determine if exposure to pesticides and other chemicals impact  
     children's growth patterns (BMI, neurological measures etc_. 

•     First, focus on studying/estimating the growth patterns of children. 

•     Second, determine if early life predictors are related to the 
      patterns 

    pesticide/chemical exposure in utero 

    ODT, PDT, PDE, BPA (bisphenol A) 
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CHAMACOS Data 
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Cluster Analyses 

•  Clustering is the task of assigning a set of objects into groups 
     so that the objects in the same group are more similar to each 
     other than to those in other groups. 

•  What does it mean for objects to be more similar or more dissimilar? 

  Distance matrix 

•  Why do we cluster objects? 
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Standard Clustering Methods 

•  Partition methods 

  Partition objects into K groups so that an objective function 
            of dissimilarities is minimized or maximized. 

  Example: K-means Algorithm 

•  Model-based methods 
  Assume a model that includes a grouping structure and 

            estimate parameters. 

  Example: Finite Mixture Models 
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K-means algorithm 
•  Input: Data for n individuals in vector form. For individual i , the 
observed data vector is 

•  Measure of Dissimilarity: Squared Euclidean distance. The 
    dissimilarity between the 1st and 2nd individuals is 

yi = (y1i, . . . ,yim).

d(y1 � y2) = ky1 � y2k2 = (y11 � y12)2 + · · · + (yim � y2m)2
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K-means Algorithm 

•  Goal: Partition individuals into K sets                                                so as 
to minimize the within-cluster sum of squares 

where        is the mean vector of individuals in      . 

C = {C1,C2, . . . ,CK}

⌃K
k=1⌃yi2Ckkyi � µkk2

µk Ck

(K must be known before starting K-means. There are many ways to choose K from the data 
 that try to minimize the dissimilarity within  each cluster while maximizing the dissimilarity  
between clusters: for example, the use of silhouettes.) 
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Application to Simulated Data  
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Application to Simulated Data  
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How would you describe—interpret—the group trajectories? 
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Finite Mixture Model Applied to 
CHAMACOS Data 
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Finite Mixture Model Applied to 
CHAMACOS Data 
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Finite Mixture Model Applied to 
CHAMACOS Data 
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Clustering by Shape 

•  Interested in shape not just level (which appears to dominate  
     clustering techniques) 

•     Want a method that: 

    Works with irregularly sampled data 

     Includes a way to estimate the relationship between baseline 
             risk factors and group membership 

     Groups individuals according to the outcome pattern over 
             time ignoring the level 
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Clustering by Shape Options 

•  Estimate slopes between neighboring observations and cluster on the 
    “derived” observations 

•  Fit splines for each individual, differentiate, and cluster on coefficients of 
     resulting derivative 

•  Use partition based cluster methods (like PAM) but use (i) the Pearson 
     coefficient as a distance or dissimilarity measure 

    or the cosine-angle measure of dissimilarity 

•  Vertical shifting individual trajectories 

d

corr

(x,y) = 1� Corr(x,y)

d

cos

(x,y) = 1�
⌃m

j=1xj

y

j

(⌃m

j=1x
2
j

)(⌃m

j=1y
2
j

)
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Vertical Shifting 
•  For each individual, calculate 

•  Each individual now has mean zero and so level is removed from  
     any resulting clustering 

•  Apply clustering technique to shifted data, e.g. finite mixture model 

y⇤i = yi �m�1
i ⌃mi

j=1yij
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Correlation Models for Vertical Shifted Data 
•  Without specifying group, suppose 

where                 is an             length vector of 1s, and 

                                           is the jth element of the vector of mean values for 

the kth group evaluated at the observation times ti  . Thus, 

Imi
mi

µij = µk(tij)

y⇤
i = Aiyi = µi � µ̄i + ✏i � ✏̄i

y⇤
i = �iImi + µi + ✏i, � ⇠ F�, ✏ ⇠ N(),⌃)
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Correlation Models for Vertical Shifted Data 

Cov(Y⇤
i � µi) = Cov((A� Imi)µi + A✏)

Two components of the covariance 

  One induced by the averaging process 

  One induced by (random) observation times 
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Correlation Models for Vertical Shifted Data 

Observation Times Fixed 

suppressing the individual/group indices for simplicity (Σ is allowed 
to vary across clusters) 

This covariance matrix is singular since 

This naturally reflects the “loss” of one dimension   

Cov(Y⇤ � µ) = A⌃AT

det(A) = 0
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Correlation Models for Vertical Shifted Data 

Observation Times Fixed 

•  If                         (conditional independence with constant variance, 
  then the induced covariance is exchangeable with negative correlation 
  given by                         and variance decreases to  

•  If original covariance is exchangeable with constant variance and  
  correlation ρ then the induced covariance remains exchangeable 
  with negative correlation and reduced variance  

⌃ = �2I

�1/(m� 1) �2
�m� 1

m
)

�2(1� ⇢)
�m� 1

m
)

Cov(Y⇤ � µ) = A⌃AT
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Correlation Models for Vertical Shifted Data 

Observation Times Fixed 

 If                         (conditional independence with constant variance, 
  then the induced covariance is exchangeable with negative correlation 
  given by                         and variance decreases to  

 This induced exchangeable correlation is the lower bound for  
  correlation in an exchangeable matrix 

Thus, if “estimated”, the (true) parameter is on the boundary of the  
 parameter space 

⌃ = �2I

�1/(m� 1) �2
�m� 1

m
)

Cov(Y⇤ � µ) = A⌃AT
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Correlation Models for Vertical Shifted Data 

Observation Times Random  
(µ is random) 

Sum of two non-invertible matrices, but the positive magnitude of the 
first matrix may counteract  the negative correlations of the second.  

Cov(Y⇤ � µ) = m

�2
�
⌃m

j=1V ar(tj)[µ0(E(tj))]2
�
11T + A⌃AT
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Correlation Models for Vertical Shifted Data 

Observation Times Random  
(µ is random) 

500 simulations of 

where the error covariance matrix is of exponential form with range ρ 

Cov(Y⇤ � µ) = m

�2
�
⌃m

j=1V ar(tj)[µ0(E(tj))]2
�
11T + A⌃AT

Yi = µi + ✏i ✏i ⇠ N(0,⌃⇢)

t = T + ⌧ ⌧ ⇠ N(0, �2
⌧I)

T = (1, 2, . . . , 9, 10)
µij = µ(tij)
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Correlation Models for Vertical Shifted Data 
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Simulated Data 
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Application to Simulated Data  
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Vertical Shifting Applied to Simulated 
Data 
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Vertical Shifting Applied to Simulated 
Data 
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500 Simulations 

negative slope, low level  

negative slope, high level 

zero slope middle level 

positive slope, low level 

positive slope, high level 

µ1(t) = �1� t

µ2(t) = 11� t

µ3(t) = 0

µ4(t) = �11 + t

µ5(t) = 1 + t

Mean functions evaluated at five equidistant points that span [1,10} 
Including ends of the interval 
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500 Simulations 

negative slope, low level  

negative slope, high level 

zero slope middle level 

positive slope, low level 

positive slope, high level 

µ1(t) = �1� t

µ2(t) = 11� t

µ3(t) = 0

µ4(t) = �11 + t

µ5(t) = 1 + t

Two components to noise:  random individual level perturbation  

                                               random measurement error across times 

                                                                     (exchangeable correlation) 

N(0, �2
�)

N(0, �2
✏ )
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500 Simulations 
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Vertical Shifting with CHAMACOS 

•  Two-part models 
•  First, use standard regression models to relate baseline predictors  
     to BMI 
•  Then, use vertically shifted shape clustering with (same or different 
     baseline predictors for shape groups) 

•     For BMI in the CHAMACOS data 

     Works with irregularly sampled data 

      Includes a way to estimate the relationship between baseline 
             risk factors and group membership 

      Groups individuals according to the outcome pattern over 
             time ignoring the level 
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Vertical Shifting with CHAMACOS 
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Vertical Shifting with CHAMACOS 
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Further Thoughts 

•    Time-dependent covariates 


