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 Motivating application
 Challenges of model uncertainty
 How environmental risk assessment proceeds
 Limitations when applied to epidemiological data 
 Bayesian model averaging as a tool for handling 

model selection uncertainty
 Comparison of some common approaches to BMA
 Discussion
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 widely used early to mid 20th century in 
transformers, capacitors, and electric 
motors

 Health danger firmly established in 1970s 
with poisoning from  contaminated rice 
oil, and evidence of carcinogenicity based 
on animal studies

 Though US banned production in 1979, 
PCBs considered a ubiquitous, persistent 
environmental pollutant.

 PCBs store in animal fat and 
bioaccumulate through food chain. 

 90% of current-day exposure via diet, 
especially dairy, meat, fatty fish

Well-designed studies yield different conclusions
◦ Methods to assess exposure/outcome differ
◦ Varying methods to analyze data and adjust for 

potential confounders (model selection)
◦ Levels of exposure vary across study
◦ Extreme observed exposures within a given study
◦ Concurrent exposures to other pollutants such as 

Mercury, Dioxins (possible effect modification)
◦ Actual chemical exposure different (209 PCB 

congeners)
◦ Beneficial effects of supportive environment may 

protect some population subgroups
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 Cohort study of 71 mother/infant pairs 
 Our subset – 88 mothers who breastfed
 Exposure: log(sum of 3 main PCB congeners * 

duration of breastfeeding)
 Outcome: Kaufman Assessment Battery for 

Children (at 42 months old)
 Other possible covariates: maternal age, BMI, 

alcohol consumption, socioeconomic status, 
HOME score, and gender

Covariates tend to be quite correlated 
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Lots of noise, 
lots of 
correlation

Full model:

where:

P= 7 possible predictors  27 = 128 possible 
models, assuming no interactions or other 
functions of covariates

ܻ݅ ൌ 0ߚ  ሻ݅ܤܥ1ሾlogሺܲߚ ∗ ሿ݊݅ݐܽݎݑ݀  ሻ݅ܧܯܱܪ2ሺߚ
 ܫ݅ܯܤ3ሺߚ ሻ  ݎ4ሺ݃݁݊݀݁݅ߚ ሻ  ݈ܽ݊ݎ݁ݐ5ሺ݉ܽߚ ሻ݈݄݈݅ܿܽ
 ܧ6ሺܵߚ ݅ܵሻ  ݈ܽ݊ݎ݁ݐ7ሺ݉ܽߚ ܽ݃݁݅ሻ  ݅ߝ  
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 Consider variety of plausible models, select 
one, and draw inferences from single, “final” 
model ignoring plausible alternatives

 Underestimates true variability and 
uncertainty due to model selection process

 Results in over-confident, risky decision-
making (Draper, 1995)

Suppose we 
1) Fit
2) Test
3) Only if we reject H0 , then calculate a 

confidence interval on β1

What properties do we expect the confidence 
interval to have?  

0 1i i iY X    

0 1: 0H  
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True coverage probability is

where Power() is Pr(reject H0|  is true value)

Note that coverage probability is 0 when  =0, 
and approaches  only as  grows large

0
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Unconditional 
confidence 
intervals look as 
expected

None of the 
conditional 
confidence 
intervals cover 0
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Unconditional 
confidence 
intervals look as 
expected

Most of the 
conditional 
confidence 
intervals cover 
=.05, but are 
clearly skewed

Unconditional 
and 
conditional 
confidence 
intervals are 
very similar
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Traditional practice of picking a best model 
then reporting confidence intervals for 
coefficients may be biased, especially in 
settings where there is a high degree of noise.

Implications particularly problematic in 
environmental risk assessment where we use 
estimated coefficient of exposure of interest  
to predict a “safe” dose.    Lets take a brief 
diversion to see how this works.  

Step 1: Establish that exposure of interest has an 
adverse effect
Step 2: Benchmark Dose (BMD) solves

P(d) – P(0) = BMR
where P(d) is probability of an adverse effect and 
BMR (benchmark response) = 0.01, 0.05 or  0.1 
Step 3: Compute lower                                       
confidence limit, BMDL
Step 4: Linearly extrapolate

Estimated dose response curve
Upper limit on dose response curve

BMD
BMDL
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Need to specify a threshold level of Y that can be 
considered adverse.  E.g.
 Pick a cutoff that has some clinical meaning
 Scoring below 75 on an IQ test
 Having a BMI above 25 (or 30?) 
 Scoring below 85 on K-ABC assessment
 Pick a cutoff that corresponds to a lower (or upper) 

percentile (usually 1% or 5%) of general population

To do analysis, can dichotomize outcomes 
(inefficient) or do regression analysis and then 
compute the tail probabilities

Suppose 

Where X1 is exposure of interest and X2 is a confounder. If lower
values of outcome are “adverse”, then

And solution to P(c)-P(0)=BMR is:

where 

And solution is the same for all values of the confounder, X2

ܦܯܤ ൌ
ߪܳ
1ߚ
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Where lower outcome are adverse, Budtz-
Jorgensen (2001) provides an approximation 
to BMDL that accounts for fact that variance 
must be estimated:

ܮܦܯܤ ൌ
ߪܳ

መlogߚ 	ሺܲܤܥሻ  መlogߚሺܧ05ܵݑ ሺܲܤܥሻሻට1  ሺ2ݐ െ 05ݑ
2 ሻ/2݂݀

 

Where  ݐ ൌ
ሺߚlog ሺܲܤܥ ሻ

logߚሺܧܵ ሺܲܤܥ ሻሻ/ඥ݂݀
  and 05ݑ ൌ െ1.645 

Consider

where Xi1 is exposure of interest and rest are 
confounders.  Estimated coefficient (and hence BMD) 
sensitive to model choice.  

Model selection a big topic in stats literature 
 Traditional (stepwise etc) 
 Penalty-based approaches such as the Lasso
 Bayesian approaches that place a mixture prior on 

each 
 Model averaging 

0 1 1 2 2 ...i i i p ip iY X X X         
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Let  ࡹ ൌ ሼܭܯ…,2ܯ,1ܯሽ		be the family of models over which we will 
average.  For PCB data, ܭ ൌ 27 ൌ 128 

݇ࣂ ൌ ൫݇ࢼ,  parameters characterizing kth (multiple) linear regression		൯݇ߚߪ
model 

 prior probability of the kth model	ሻ݇ܯሺ

 prior probability model for the regression coefficients	ሻ݇ܯ,2ߪ|݇ߚሺ
of	݇ܯ , where ࢼ	is  ൈ 1	matrix, and 	= dim	ሺ݇ܯሻ 

We’ll come back presently to details (e.g. hyperpriors) 

Given priors and normal data likelihood model, for models 
k = 1,2,…K, posterior model probability for Mk is:

ሻܽݐܽܦ	|	݇ܯሺ ൌ
ܽݐܽܦሺ | ሻ݇ܯሺሻ݇ܯ

∑ ܽݐܽܦሺ | ܭሻ݈ܯሺሻ݈ܯ
݈ൌ1

 

where    ሺܽݐܽܦ	|	݇ܯሻ ൌ ࣂሺሻ݇ܯ,ࣂ	|	ܽݐܽܦሺ  ࣂሻ݀݇ܯ	|

Last piece (posterior marginal likelihood) can be hard to compute.   

We’ll discuss approaches in a moment.  
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 1. Traditional Method: 2-step process:
◦ Fit Model, Test hypothesis
◦ If reject, then calculate BMD

 2. Compute Single, Model-Averaged BMD and 
BMDL via Formula: Σ Δkp(Mk|Data)

 3. Using Posterior Model Distribution: 
to summarize empirical Distribution of BMD/BMDL

2

ˆ ˆ ˆ( | )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) [ | ] ( | ) ( ) ( | )

BMA k kk

BMA k k k BMA kk k

p M D

V V M p M D p M D

  

     


 

Model selection uncertainty
component

Estimated via a classical procedure or bootstrap

After calculating posterior probabilities and using 
classical procedures to estimate any quantity for a 
given model, k, use model weights to obtain the BMA 
estimate of its unconditional  expectation, variance
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 Provides helpful “Big picture” view, 
integrating estimation and testing into one 
step

 No need to conclude with a single 
model/estimate (even a model-averaged one)

 Depending on approach, can use MCMC 
samples or simulate data based on posterior 
model probabilities and parameter estimates 
to explore entire risk distribution

 Closed Form Solution (rarely exists in 
practice) 

 Approximations to Posterior Model 
Probability
◦ E.g. BIC approximation (Raftery, 1996)

 MCMC Methods, such as:
◦ Carlin and Chib Approach
◦ Reversible Jump MCMC (RJ MCMC)
◦ Stochastic Search Variable Selection (SSVS)
◦ Gibbs Variable Selection (GVS)



27/05/2013

14

 ሻ: prior variance݇ܯ	|2ߪሺ

݇ likelihood for model	ሻ:݇ܯ,݇ࣂ	|	ܽݐܽܦሺ ൌ  ܭ…,1,2

Priors (adopting those of Hoeting et al 1999): 

ሻ݇ܯሺ - ൌ  ݇ െ1 for allܭ	
,2ߪ	|	݇ࢼ - 	~	݇ܯ ,ࣆሺܰ  2ሻߪࢂ
|2ߪ - ݒ݊ܫ	~	݇ܯ െ ,ߥሺܽ݉݉ܽܩ  ሻߣ

◦ Assuming normal likelihood and restricting priors 
to certain conjugate distributions:
 Normal priors on Betas
 Variance prior: inverse-chi-squared distribution

◦ Results in marginal posterior distribution of the 
data Pr(Data|Mk) following an n-dimensional non-
central Student’s t distribution
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where:
◦ pk is dimension of model k
◦ n = sample size
◦ Pr(D|model, estimates) is maximized likelihood for Mk

ˆ2 log ( | , ) ( / 2) log( )

( | ) exp(0.5 ) / exp(0.5 )
k k k

k k i

BIC pr D M p n

p M D BIC BIC

 

 

 Introducing variable indicator function, g, reduces 
framework to one of fixed dimensionality

 Now, can utilize standard simulation techniques to 
estimate g and other parameters

Family of multiple linear regression models can be written: 

ܻ ൌ݃ሺ݆ሻ݆ܺ ߚ݆  ߝ



݆ൌ1

 

where  ݃ሺ݆ሻ ൌ 1 if ݆th variable is included in model 
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 Framework implemented in WinBUGS (via R plug-in 
R2Winbugs)

݃ሺ݆ሻ	~	݈݈݅ݑ݊ݎ݁ܤሺ0.5ሻ for ݆ ൌ 1,2,…ܲ 

ߚ݆ 	~	ܰሺ0,  2ܸሻߪ

ݒ݊ܫ	~	2ߪ െ ,ߥሺܽ݉݉ܽܩ  ሻߣ

And likelihood: ܻ ~ ܰሺ∑ ݃ሺ݆ሻ݆ܺ ߚ݆ , 2ܲߪ
݆ൌ1  ሻܫ

Basic idea/process: 
◦ Given starting model M, propose jump to new 

model M* that differs by adding/deleting 1 variable
◦ In this case, used jump probability j(M|M*) = 

j(M*|M) = 1/P for all models
◦ Generate series of 1-to-1 deterministic functions 

that allow us to jump between model spaces of 
differing dimensions (merely tool/construct so that 
MCMC theory principles hold)
◦ Accept move with probability somewhat 

proportional to ratio of marginal likelihoods of the 
data under M* vs. M
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Left hand panel:    All Models
Right hand panel:   Only models that include exposure 
Covariate Inclusion in Model (Infinite/Extreme Values 
Truncated at 100)
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 Posterior probability for risk factor inclusion 
(i.e. probability of a nonzero effect size or 
“weight” for the jth covariate):

 To extent that priors convey a pre-data sense 
of uncertainty as to inclusion/exclusion of a 
covariate, these reflect post-data uncertainty

Pr൫݆ߚ ് 0	ห ሻܽݐܽܦ ൌ  ݅ܯሺ | ሻܽݐܽܦ
∋݆:݅ܯ ݅ܯ
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Bayesian Model-Averaged Estimates of Relationship
between log(PCB) exposure (standardized) and test
score, all 4 methods
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 BMA can be used to find the full empirical 
distribution of BMDs, BMDLs or other 
quantities, which captures (1) model 
uncertainty and (2) parameter uncertainty

 Lots of interesting questions 
◦ Enlarging model space
◦ Sensitivity to model space specification
◦ Better approximate solutions
◦ Improving the MCMC performance
◦ Theoretical properties of BMD, BMDL – does it solve 

the two-stage problem of the traditional approach? 
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 1. Traditional Method: 2-step process:
◦ Fit Model, Test hypothesis
◦ If reject, then calculate BMD

 2. Compute Single, Model-Averaged BMD
◦ Formula: Σ Δkp(Mk|Data)

 3. Using Posterior Model Distribution: 
◦ Simulate Data, 
◦ Fit Model, 
◦ Estimate BMD, and 
◦ Repeat to Examine Empirical Distribution of 

BMD/BMDL


