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22 faculty members  (16 tenured/tenure-track)

• Collaborate with and supervise the work of 

• analysts & research statisticians 

• postdoctoral fellows and graduate research assistants

• Collaborate with scientists and clinicians 

 at MD Anderson 

 at other institutions – national and international 
collaborations

MD Anderson 

Statistical Analysts

Department of Biostatistics

• Collaborate with 
researchers on study 
design

• Prepare statistical 
considerations for grant 
applications

• Perform data analysis 
services

• Participate in review of research protocols for statistical strength 

• Staff drop-in statistics clinics three times per week

• Work with Biostatistics faculty on research projects/collaborations
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MD Anderson 

Quantitative Research Computing Group
Department of Biostatistics

Team of programmers and systems analysts conducting:

• Information computing services

• Data management initiative

• BCB software engineering

• Bayesian numerical analysis 
and solutions

Data Management Initiative Group

Information and Computing Services

Clinical Trial Design and 
Implementation Services

BCB Software Engineering

Develop and lead the Department of Biostatistics as a 
nationally and internationally recognized and well-funded 
program 

Develop a well-rounded department that is world-famous for

 Research ― novel methodology & collaborative endeavors

 Training postdoctoral fellows, graduate students, and analysts

Translate genomic knowledge and technology 
to bridge the gaps between

• biostatistics

• bioinformatics

• computing

• applications to biology, clinical medicine, public health 

• benefits to our patients and society at large
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• Develop innovative statistical methods with application to cancer 
research

• Provide biostatistical collaboration, consultation, and quantitative 
research resources to clinical, laboratory, and prevention scientists 
for the planning, conduct, analysis, quality assurance, and 
interpretation of research studies

• Train the next generation of biostatisticians

Statistical applications in clinical, basic science, and behavioral/social 
science research

• Integrated statistical modeling of high-dimensional biomarker and 
complex functional, and  imaging data

• Computer-intensive statistical methods
• Bayesian modeling, computation, and inference
• Clinical trial design and analysis (e.g., adaptive randomization)
• Cancer screening and early detection research
• Sequential statistical designs
• Statistical modeling for behavior and social science applications

Five impactful areas of research:

• Integrative analysis of multiplatform genomic and other high-

dimensional data

• Early cancer detection, statistical & data coordinating center

• Imaging statistics

• Innovative clinical trial design and analysis

• Behavioral and social statistics
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Innovative Clinical Trial Design and Software Services

CTC:

This group provides a Clinical Trial Conduct (CTC) software system where 
clinicians use a web-based user interface applying Bayesian statistical methods 
to the conduct of clinical trials.  Over 290 trials have been conducted by 700 users 
at multiple institutions using a variety of innovative statistical methods.

Recent Windows software releases:

 One Arm Time-To-Event monitoring program

 BMA-CRM dose-finding program updates

 Eff-Tox dose-finding program updates

 BOIN  (Bayesian Optimal Interval design) program

 Numerical Software Library (C++) updates

Recent book publication:

 “Bayesian Designs for Phase I-II Clinical Trials”, 

June 2016, with supporting C++ software applications
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Innovative Clinical Trial Design and Software Services

This group is also known as the Numerical-Statistical Software Group.  It 
provides innovative clinical trial software design services, including software and 
statistical tools for all stages of clinical trial design, planning, conduct, and 
analysis.

Functions:
 Collaborate with other researchers to develop software for innovative trial 

designs, often published in prominent peer-reviewed statistical journals.

 Maintain and support core statistical software applications produced via 
modern software engineering processes.  Produce, maintain, and monitor an 
infrastructure supporting software development with 24/7 system availability.

 Develop and maintain a website (CTC) used world-wide by clients for 
calculating sophisticated statistics for conducting clinical trials.  Provide user 
management, security, validated numerical calculations.

 Provide a Software Download Kiosk (website) from which any statistician can 
download over 85 software packages authored by this group. Software has 
been downloaded by 17,500 scientists worldwide. 

Design and Statistical Considerations for 
Phase I Cancer Clinical Trials

Prob(DLT)
1

0.75

Dose-Toxicity Curve

0.50
0.33

0.25

0

Dose: 1 2 3 4 5 6

1. Premises:
There is an unknown dose-toxicity curve.
Higher toxicity is associated with higher efficacy.
Given a certain target toxicity level (TTL) one is willing to accept, the goal is
to find the maximum tolerated dose (MTD) which yields the TTL.

2. Key Elements
(a) Define the dose limiting toxicity (DLT)
(b) Choose a starting dose
(c) Define the dose escalation scheme in terms of  dose spacing, dose assignment, 

and cohort size
(d) Determine the MTD by an algorithm or a model-based method

3. Major drawback of the conventional Phase I design:
starts too low, escalates too slow, and takes too long
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Dose Assignment / Cohort Size  of the 
Conventional 3+3 Design

1. Enter 3 patients at the starting (lowest) dose level

2. If 0/3 has DLT  Next 3 pts at the next higher dose level  

If 1/3 has DLT   3 more pts at the same dose level

1/3 + 0/3 has DLT  Next 3 pts at the next higher dose level  
1/3 +  1/3 have DLT   Exceeds the MTD

If 2/3 or 3/3 have DLT   Exceeds the MTD

3. If the current dose has not exceeded the MTD, repeat step 2

4. If the current dose has already exceeded the MTD:
(a) current dose = starting dose: MTD not defined
(b) current dose > starting dose
(i) only 3 pts treated at the previous level, enter 3 more pts at that

level  0/3 + 0-1/3 DLT  Declare the level as MTD
0/3 + 2-3/3 DLT  Exceed the MTD go back to step 4

(ii) 6 pts already treated at the previous level (must be 1/6 DLT):
 Declare that level as MTD

5. If need to escalate beyond the last dose level: MTD not defined

One drawback: The MTD does not correspond to a fixed TTL.

For example, the 3+3 Design may choose the MTD at a level of  23% 

DLT in one trial, and in another trial, it may choose theMTD  at a level 

of 15% DLT.

Another drawback: The algorithm is not flexible enough tochoose  the 

MTD at any TTL. In practice, different TTLs may be accepted  

depending on the patient population, disease site, available trtmt

Continual ReassessmentMethod  
(CRM)

(O’Quigley et al, Biometrics, 1990)

1.A Bayesian methodology to estimate thedose-toxicity curve and 
to  assign patient at a level closest to the current estimate of the
MTD

2. Choose a family of dose-toxicity curve to model
p = Prob(DLT at dose d) = f ( d | a ) with parameter a,e.g.:

Power model:

3. Goal: find the MTD  d*  which yields the pre-specified TTL p*
i.e.: d*  =  f  -1 ( p* | a)

4. Scheme
(a) Assume a vague or non-informative prior distribution for a.
(b) Given the current information of a, treat 1 patient at the dose  level 

closest to the current estimate of the MTD
(c) Observe the toxicity outcome of the patient
(d) Update the info of a by computing its posterior distribution
(e) Repeat steps (b)-(d) until the max number of patients isreached.

tanhd + 1----------------------------
2

d

ed + e–d
-----------e--------

a

Hyperbolic tangent model: p =
a

=

3 + a d

- 14 -

One-parameter logistic model: p  = -----e------------------------

1 + e3 + a d

p  =  dexpa
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The general idea to estimate  toxicity probability 

 The CRM design utilizes toxicity data.

 Initial guess needs to be completely specified before the trial begins.

 The performance of this design is sensitive to the initial guess of toxicity probability.

- 16 -

Properties of CRM

Advantages of CRM

1.It is a model-based method with a clearly defined objective.
2.It treats more patients at doses closer to the target MTD and, hence,  reduces the number of 

patients treated at ineffective dose levels.
3.Because more patients are treated around the target level, it gives  more precise estimate of the 

Prob(tox) at MTD.
4.Although CRM does not determine the lowest dose level and dose spacing, there is no restriction of 

treating patients only at pre-speci- fied doses. (e.g.: continuous infusion)

Disadvantages of CRM

1.It may be TOO AGGRESIVE. Patients may be treated at very high  toxic doses in the early phase 
of the trial.

2. Success depends on the proper choice of the dose-toxicity curve  and the prior distribution of its
parameter(s).

3.Because of cohort size 1, it may take long time to complete a trial  with high patient accruals.

4. Need special computer programs to implement the design.
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 Divides  space for toxicity prob i: [0, pT – ε1],    [pT – ε1, pT +ε2 ],   [pT +ε2 , 1]

 Make decision based on which interval has the largest unit probability mass (UPM) , 
defined as ratio of posterior density falling within the interval and interval length:

1. [0, pT – ε1]            has the largest UPM:     de-escalate
2. [pT – ε1, pT +ε2 ]   has the largest UPM:      retain current dose
3. [pT +ε2 , 1]            has the largest UMP:     escalate

pT is target toxicity prob
Only requires a definition of an equivalence interval (EI)

[pT – ε1,  pT +ε2 ] 

Physician specifies  lowest toxicity prob acceptable to treat 
future patients without dose escalation → pT – ε1

Physician specifies  highest toxicity prob acceptable to treat 
future patients without dose de-escalation → pT + ε2

Comparative Simulation Results with matched 
sample sizes

 3+3 design has higher risks of exposing 
pts to toxic doses above MTD

 Compared to mTPI, 3+3 does not yield 
higher probs in identifying correct MTD

 mTPI is equally transparent as 3+3, 
costless to implement with free software, 
more flexible in practical situations
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 BOIN design combines the simplicity of the 3+3 
design with the superior performance of more 
complicated, model-based designs, e.g., 
continuous reassessment method (CRM). 

 BOIN makes the decision of dose escalation and 
de-escalation simply by comparing the observed 
DLT rate at the current dose with a pair of fixed, 
predetermined dose escalation and de-escalation 
boundaries. 

 Has been used in >20 trials in MDA and NCI.

Liu S and Yuan Y (2015) JRSS-C, 64, 507-523.
Yuan Y, Hess K, Hilsenbeck, S & Gilbert M (2016), Clinical Cancer Research, 22, 4291-4301.
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DLT	rate	at	the	current	doseൌ
No.	of	patients	experienced	DLT	at	the	current	dose

No. of patients treated at the current	dose

Escalation/Deescalation Boundaries
Table 1. Dose escalation and de‐escalation boundaries 

 Target toxicity rate for the MTD 
Boundary 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

e (escalation) 0.078 0.118 0.157 0.197 0.236 0.276 0.316 
d (de‐escalation) 0.119 0.179 0.238 0.298 0.358 0.419 0.479 
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 Although extremely simple, BOIN has 
very competitive performance.

Zhou H, Yuan Y, Hess K and Lei Nie (2018), Clinical Cancer Research, 
DOI: 10.1158/1078-0432.CCR-18-0168
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A semi-mechanistic dose-finding design in oncology using 
pharmacokinetic/pharmacodynamics modeling

Biostatistics faculty: Yisheng Li & Kim-Anh Do
Biostatistics postdoc fellow: Xiao Su

• Motivation
• Feasibility
• Performance
• Conclusion
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 High failure rates in phase III cancer clinical trials

 Known and potential reasons:
 Narrow therapeutic index of cancer treatments
 Small sample sizes of early phase trials
 Limitations of existing dose-response models:

1. Empirically based
2. Difficulty in modeling schedule effects
3. Difficulty in modeling effects of method of administration,  including 

drug formulation, route of administration, and drug  delivery system

 Essence of the limitations: ignores the mechanism of the  drug 
effects that are often (partially) available

 A potential solution: mechanism-based dose-response  
modeling

A motivating Phase 1 trial at MD Anderson 

Patients: with metastatic or locally advanced solid tumors  
Study drug:  a γ-secretase inhibitor
Mechanism of the drug effect in vivo: blocks Notch signaling  via 
γ-secretase inhibition and produces a slower growing  
differentiation phenotype in human cancer cells

Treatment cycle:  10 days
Five total doses per cycle: 10mg, 14mg, 20mg, 23mg, 31mg
Method of administration:  intravenous (IV)
Four schedules: 3-, 4-, 5-, and 6-dosing regimen  

Primary goals:  characterize the DLTs, overall safety, and
identify an MTD for each schedule  
Secondary objectives: characterize PK profiles  
Target toxicity: 30%
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PK/PD modeling and relationship with clinical outcome

PK model:

• dynamic dose(schedule) - concentration relationship
• characterizes what the body does to the drug

PD model:

• dynamic concentration-effect relationship

• characterizes what the drug does to the body

Model the full PK/PD profiles,  and model its effect on the DLT prob

Proposed joint model represents a Dose Concentration  Effect 
Intensity (Clinical) Outcome  (DCEO)  framework

Proposed design is a Semi-Mechanistic Dose-Finding (SMDF) 
design

Mechanism

Drugadministration

Drug in GItract

Pharmacological  
effect

Clinical response

Excreted frombody
Elimination

Absorption

Dose‐concentrationprocess

Concentration‐response process

Drug intablet

Accumulate

Drug in circulatory  
system

Drug in actionsite

Distribution

MetabolismAdministration

Inactiveform
Metabolism

Motivation: Mechanistic dose-response modeling
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PD marker is latent

To identify PD model para’s  need 
to link PD marker to obs DLT 
outcome

PK/PD modeling links 2 important 
fields of pharmacology together, 
result in integrated PK/PD models 
describing dynamic drug effect 
intensity over time in response to 
a dosing regimen

Final step: link drug effect to the 
DLT outcome by a link function 
h(η)  = 1 - exp (- η)
where  η is cumulative effect of 
drug for patient over time interval 
[0,t]

PK/PD profiles based on preclinical studies

• PK/PD modeling/profile information based on PK/PD data  from 
preclinical studies

• Uncertainty quantification of the PK/PD profile information  based
on PK/PD data from in vitro and in vivo studies

PK/PD data in clinical trials

• PK data almost always available in dose-finding trials
• PD data often available for efficacy evaluation in phase I/II  

or phase II studies
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Some notation

Drug administration time: s = (s1, s2, ...,sK )
Drug administration dosage: d = (d1, d2, . . . , dK )
Dose of one administration: d
Treatment regimen: τ  = (d, s)
Drug concentration in plasma at time t: c(t )
Drug concentration in gastrointestinal tract: a(t ) (when  applicable)
Volume of distribution of the drug in the body: V
First-order elimination rate in one-compartment model: ke

First-order absorption rate in one-compartment model: ka

(when applicable)

Some initial conditions, e.g., c(0) = d/V
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 Optimal regimen: defined as  (15)
Φ is the target toxicity probability

 Posterior updating:  At any decision point, the 
posterior distribution of the unknown parameters is 
updated using all accumulated data at that point.

 Safety rules: To avoid overdosing,  define regimen τ to 
be safe if

tuning para ψ
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The SMDF design utilizes both toxicity data and drug concentration 
data by a joint model to describe the dose-concentration-response 
relationship simultaneously. 

General idea to estimate toxicity probability 

 Five  does levels, target toxicity of 0.3

 Evaluate OC’s under 2 different clinical settings:
• Max sample size 30,  cohort size 3
• Max sample size 2, cohort size 2

SMDF design:
• Concentration measurement time: (1, 3, 5, 10, 12, 24) hours
• t ref  = 7 hours
• Drug is administered by IV - 1 dosing regimen in 7-day trtmt cycle
• Dose levels: total dosage administered  within a trtmt cycle
• Working model: IV (for PK) + Emax (for PD) ; tuning para ψ= 0.1
• η: cumulative toxicity effect of drug for pt i over time interval t
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CRM  design:

• Toxicity prob at level j: pj = aj
exp (α)                     α ~ N(0,1.34)

• Implemented safety constraint by Zohar & Chevret (2000)
• Chose 2 sets of (skeleton) prior probabilities by Lee and Cheung 

(2009), to investigate sensitivity of CRM design to choice of 
skeleton

(0.123, 0.204, 0.300, 0.402, 0.501)
(0.062, 0.160, 0.300, 0.453, 0.594) 

mTPI (modified Toxicity Prob Interval) design: 

assume ε1 = ε2 = 0.05

BOIN design: 
• Set highest toxicity prob deemed subtherapeutic = 0.18
• Set lowest toxicity prob deemed overly toxic = 0.42
• Cutoff to eliminate any overly toxic dose is 0.95

PKPOP design:
• PK data collection scheme is the same as in the SMDF design
• Critical predictor AUC is estimated using the IV model

Two different methods to generate data:
1. Modeling framework of the SMDF design using IV + 5PL (5-para 

logistic model)

2. Data generating framework in Ursino et al (2017), except using 
one compartment  PK model IV, using a logit link of toxicity prob
to AUC   

This allows us to investigate the robustness of the performance of 
the SMDF design under more extreme scenarios
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The general idea to estimate the toxicity probability 

The PKPOP design utilizes both toxicity data and drug concentration 
data by a sequential procedure. 

The major differences among the three designs are the method to compute toxicity 
probability(labeled in dark blue).  

The general allocation scheme of CRM, SMDF and PKPOP are quite similar
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Scenario1: 
True MTD is third dose, 
CRM2 selects true MTD with highest prob, 
SMDF performance close to CRM2

Scenario 2 and 3: 
True MTD is second and fourth dose levels, 
SMDF selects true MTD with highest prob

amongst 6 designs,
SMDF allocates most pts at true MTD

and fewest pts to overly toxic dose levels

Scenario 4: 
True MTD is highest dose, 
Toxicity of fourth dose level  close to that of true MTD

Max SS=30:
CRM1 and BOIN  select true MTD with highest prob,
SMDF  is third best , selection prob close to CRM1/BOIN
Selection prob of CRM2, PKPOP designs much lower

(approx. 0.2) 

Max SS=20:
CRM1 select true MTD with highest prob,
SMDF  is third best

Scenario 5: 
All dose levels are toxic
A satisfactory design should recommend 

“inconclusive” with high prob

SMDF recommends “inconclusive” with high prob
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Scenarios 1 and 2: 
True MTD is second and fourth dose levels, 
CRM2 selects true MTD with highest prob, 

Performance of SMDF, CRM!, BOIN, mTPI designs
are  close to each other

Scenario 3: 
All dose levels are toxic
An adequate design should recommend mostly

“inconclusive” trials and terminate the trial
as quickly as possible

SMDF recommends “inconclusive”  correctly
with high prob
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Scenario 4 : 
True MTD is at the highest dose level, 
CRM1 selects true MTD with highest prob, 

Performance of SMDF is close to that of CRM1
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• SMDF design improves identification of MTD in most scenarios when
true data generating process is similar, yet still different from , 
the IV+Emax model.

• Although CRM designs may perform best in some scenarios, 
their performance may be sensitive to the choice of the skeleton

• If the true data generating model is considerably different from the
IV+Emax model, CRM designs using 2 initial guesses outperform the 
other 4 designs in scenarios 1 and 2,  but perform worse in scenarios 3 and 4

• In scenarios where CRM performs best, SMDF performs second best

• Overall,  SMDF design performs better than CRM, BOIN, mTPI, and PKPOP 
designs considering both the efficiency  and robustness of the MTD allocation,
as well as patient allocation.

• DCEO framework facilitates better learning of the dose-toxicity curve, 
which may facilitate better dose selection in subsequent trials

Simulation results summary
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Investigate performance of estimation of  dose toxicity  curves 

Ursino et al (2017)  demonstrated improved performance of estimation of dose-toxicity curves using their 
proposed designs , including the PKPOP design,  over conventional designs

Table 5 compares bias and MSE of the estimated toxicity prob corresponding to tried dose levels using SMDF 
and PKPOP models

Conclusion:  SMDF   model estimated the toxicity probabilities  with slightly lower MSE and comparable biases
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 We proposed a new modeling framework for the relationship 
for dose-finding designs in single- and multiple-schedule
settings

 The proposed modeling framework and resulting designs  
look feasible and perform well, as compared to select  
common phase I designs

 The proposed modeling framework can be readily  extended 
to a large number of early phase clinical trial  settings

 Examples of some interesting issues in the extension of  the
designs:

• Availability of analytic solutions to the system of differential  
equations that characterize the PK profiles, especially in  
population PK modeling

• Applicability of superposition principle
• .Properties of the baseline hazard function when modeling  time-

to-event outcomes

Courtesy of S Hanash

Biomarker panels
Therapeutic targets 

Cell lines
♦ whole cell extract
♦ media
♦ surface proteins
♦ nuclear proteins

Human studies
♦ plasma/serum
♦ tissues

Mouse models

Immunomics Metabolomics
Glycomics

Genomics

ProteomicsTranscriptomics
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 The genome on its own “has turned 
out to be a relatively poor source of 
explanation for the differences 
between cells or between people” 
(Baines 2001)

 The clinical management of cancer 
and other complex diseases can be 
substantially improved by 
“integrative” approaches

 Distinct data types provide a different, 
only partly independent and 
complementary view on most 
complex, disease‐related questions 

• Biological complexity requires 

multi‐dimensional and multi‐system 

analysis

• Biological analysis requires an 

appreciation of context

Understanding Cancer’s Complexity

• Pathway analysis

• Disease modeling

• Cancer gene discovery

• Biomarkers

• Cancer Drug Development 

TranscriptomePathology

Correlative Study

TranscriptomePathology
Model-based Study

TranscriptomeClinical attributes
Integrative Clustering

Epigenome

• Triple-negative breast cancer
• Breast cancer proteomics

Applications

Applications

• Lung adenocarcinoma

Applications

Stratification of patients with breast 
cancer

• A two-step algorithm
• Molecular regularized algorithm

Proteome
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Integromics: to understand biology (regulatory 
mechanisms) and clinical association/prediction 

• Develop frameworks to model mechanistic & clinical outcomes
• Assess within and between platform interactions
• Imaging + genomics  ― multiple levels of correlation

Epigenomics
methylation

histone modifications

microRNA
miRNA array, miRNAseq

Genomics (DNA)
copy number, phenotype
(aCGH, SNP arrays)
mutation status (DNAseq)

Transcriptomics
(mRNA) 

gene expression arrays, 
RNAseq

Proteomics 
RPPA, 2-d gels

tumor subtypes, 
(patient-specific)

Survival

Imaging

Clinical 
outcomes

False positive rate
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iBAG (0.93)
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Information flow

M

g1 = Mω1 + ε1 gK = MωK + εK,…,

GM = (Mω1,…, MωK) GM = G – GM
–

y = Cγ0 + GMγM + GMγM + ε0¯  ¯ 

DNA methylation:

Gene expression:

The part of G
regulated by M
(latent)

Clinical outcome:

The part of G
not regulated by 
M (latent)
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miRNA regulatory network using a threshold of 0.5 on its marginal posterior 
probability. The diameter of each node is proportional to its number of 
edges. Thicker edges correspond to higher marginal posterior probabilities. 
Red nodes correspond to genes; blue nodes correspond to miRNAs.

Gene regulatory network obtained from IPA. From the six genes identified, five 
(colored grey) could be mapped to a regulatory network based around NF B, CCND1 
and CDKN1A, markers of immune response, cell cycle activity and tumor suppression.

Proposed probabilistic model

DINGO: Model 
• ``passenger” event : some 

conditional dependencies are 
shared across groups

• ``driver” event : other conditional 
dependencies are unique to the 
groups

• Decompose the conditional 
dependencies into a global 
component and a ``local” group-
specific component
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• The Cancer Genome Atlas (Glioblastoma) mRNA expression, DNA 
copy number and Methylation data

• 83 long-term survivors and 73 short-term survivors

• The blue (red) edges = positive (negative) differences
• The solid (dashed) lines = conserved (differential) signs
• The thickness of the edges = strength of the association

RPPAdata

DNA methylation

microRNA expression  

mRNAexpression

Molecular Profiling Data

BRCA
Suppressed  

Activated  

Neutral

KIRC

UCEC

Protein–protein interaction  
network from database

Step 1: Cancer-
specific network

2. Outcome prediction

3. Validation

Output

1. Subtype Identification

Step 2: Subject-
specific network

Step 3: PRECISE
network score

Data

In
p

u
t

Prior Information

Data-driven  
causal network
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RPPAdata

DNA methylation

microRNA expression  

mRNAexpression

Molecular Profiling Data
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Activated  
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Protein–protein interaction  
network from database
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2. Outcome prediction

3. Validation

Output

1. Subtype Identification
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specific network
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network score
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t
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Data-driven  
causal network
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› Retain and recruit faculty, researchers, and analysts to implement established and new 
impactful research areas  (faculty recruitment committees consist of external members)

› Maintain and increase if possible the current competitive level of external research 
funding.  Plan for a P01 in biostatistics methodology for impactful research areas

› Continue  to engage with local institutions, including GSBS, Rice University, and Texas 
A&M University to strengthen our joint graduate programs, with emphasis on  
innovative courses and more effective recruitment processes to attract students with 
excellent quantitative skills

› The microbiome is  an important factor in gene–environmental  interactions that 
influence human disease susceptibility.  Improve our methodology & collaborative 
research regarding the human microbiota as it relates to cancer development, antitumor 
immune responses, imaging modalities, and clinical efficacy of immunotherapies and 
other cancer treatments, and increase efforts in biomarker-driven clinical trial designs
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