

Faculty

22 faculty members (16 tenured/tenure-track)

- Collaborate with and supervise the work of
 - analysts & research statisticians
 - postdoctoral fellows and graduate research assistants
- Collaborate with scientists and clinicians
 - at MD Anderson
 - at other institutions national and international collaborations

MD Anderson Department of Biostatistics

Statistical Analysts

- Collaborate with researchers on study design
- Prepare statistical considerations for grant applications
- Perform data analysis services
- Participate in review of research protocols for statistical strength
- · Staff drop-in statistics clinics three times per week
- · Work with Biostatistics faculty on research projects/collaborations

Quantitative Research Computing Group

Department of Biostatistics

Team of programmers and systems analysts conducting:

- Information computing services
- Data management initiative
- BCB software engineering
- Bayesian numerical analysis and solutions

Data Management Initiative Group

Clinical Trial Design and Implementation Services

Information and Computing Services

Vision

Develop and lead the Department of Biostatistics as a nationally and internationally recognized and well-funded program

Translate genomic knowledge and technology to bridge the gaps between

- biostatistics
- bioinformatics
- computing
- applications to biology, clinical medicine, public health
- benefits to our patients and society at large

Develop a well-rounded department that is world-famous for

- ✤ Research novel methodology & collaborative endeavors
- * Training postdoctoral fellows, graduate students, and analysts

Objectives

- Develop innovative statistical methods with application to cancer researc
- Provide biostatistical collaboration, consultation, and quantitative research resources to clinical, laboratory, and prevention scientists for the planning, conduct, analysis, quality assurance, and interpretation of research studies
- Train the next generation of biostatisticians

Statistical applications in clinical, basic science, and behavioral/social science research

- Integrated statistical modeling of high-dimensional biomarker and complex functional, and imaging data
 Computer-intensive statistical methods

- Computer-Intensive statistical methods
 Bayesian modeling, computation, and inference
 Clinical trial design and analysis (e.g., adaptive randomization)
 Cancer screening and early detection research
 Sequential statistical designs

- Statistical modeling for behavior and social science applications

Impactful Research

Five impactful areas of research:

- lysis of multiplatform genomic and other high-
- tistical & data coordinating center
- Innovative clinical trial design and analysis

Innovative Clinical Trial Design and Software Services

This group is also known as the Numerical-Statistical Software Group. It provides innovative clinical trial software design services, including software and statistical tools for all stages of clinical trial design, planning, conduct, and analysis.

Functions:

- Collaborate with other researchers to develop software for innovative trial designs, often published in prominent peer-reviewed statistical journals.
- Maintain and support core statistical software applications produced via modern software engineering processes. Produce, maintain, and monitor an infrastructure supporting software development with 24/7 system availability.
- Develop and maintain a website (CTC) used world-wide by clients for calculating sophisticated statistics for conducting clinical trials. Provide user management, security, validated numerical calculations.
- Provide a Software Download Kiosk (website) from which any statistician can download over 85 software packages authored by this group. Software has been downloaded by 17,500 scientists worldwide.

Design and Statistical Considerations for Phase I Cancer Clinical Trials

- (a) Define the dose limiting toxicity (DLT)
- (b) Choose a starting dose
- (c) Define the dose escalation scheme in terms of dose spacing, dose assignment, and cohort size
- (d) Determine the MTD by an algorithm or a model-based method
- 3. Major drawback of the conventional Phase I design:

Dose Assignment / Cohort Size of the **Conventional 3+3 Design**

1. Enter 3 patients at the starting (lowest) dose level

2. If 0/3 has DLT \rightarrow Next 3 pts at the next higher dose level

If 1/3 has DLT $\rightarrow 3$ more pts at the same dose level

1/3 + 0/3 has DLT \rightarrow Next 3 pts at the next higher dose level 1/3 + \geq 1/3 have DLT \rightarrow Exceeds the MTD

If 2/3 or 3/3 have DLT \rightarrow Exceeds the MTD

3. If the current dose has not exceeded the MTD, repeat step 2

4. If the current dose has already exceeded the MTD:
(a) current dose = starting dose: MTD not defined
(b) current dose > starting dose
(i) only 3 pts treated at the previous level, enter 3 more pts at that level 0/3 + 0-1/3 DLT → Declare the level as MTD 0/3 + 2-3/3 DLT → Exceed the MTD go back to step 4

(ii) 6 pts already treated at the previous level (must be 1/6 DLT):
 → Declare that level as MTD

5. If need to escalate beyond the last dose level: MTD not defined

One drawback: The MTD does not correspond to a fixed TTL. For example, the 3+3 Design may choose the MTD at a level of 23% DLT in one trial, and in another trial, it may choose the MTD at a level of 15% DLT.

Another drawback: The algorithm is not flexible enough to choose the MTD at any TTL. In practice, different TTLs may be accepted depending on the patient population, disease site, available trtmt

	E	xam	ples		
1.		Do	se Level		
Cohort	1	2	3	_4_	5
1	0/3				
2		0/3			
3			1/3		
4			0/3		
5				2/3	
MTD			***		
2.		Do	se Level		
Cohort	1	2	3	4	5
1	0/3				
2		0/3			
3			0/3		
4				2/3	
5			0/3		
MTD			***		
3.		Do	se Level		
Cohort	1	2	3	4	5
1	0/3				
2		0/3			
3			0/3		
4				2/3	
5			2/3		
6		1/3			
MTD		***			

Continual Reassessment Method (CRM)

(O'Quigley et al, Biometrics, 1990)

1.A Bayesian methodology to estimate the dose-toxicity curve and to assign patient at a level closest to the current estimate of the MTD

2. Choose a family of dose-toxicity curve to model p = Prob(DLT at dose d) = f(d/a) with parameter a, e.g.: Hyperbolic tangent model: $p = \left[\frac{\tanh(d) + 1}{2}\right]^d = \left[\frac{d}{e^d + e^{-d}}\right]^d$

One-parameter logistic model:
$$p = \frac{e^{3+a \cdot d}}{1+e^{3+a \cdot d}}$$

Power model: $p = d^{\exp(a)}$

3. Goal: find the MTD d^* which yields the pre-specified TTL p^* i.e.: $d^* = f^{-1}(p^*/a)$

4. Scheme

- (a) Assume a vague or non-informative prior distribution for *a*. (a) Assume a vague of non-mornater prior distribution for a.
 (b) Given the current information of a, treat 1 patient at the dose level closest to the current estimate of the MTD
 (c) Observe the toxicity outcome of the patient
 (d) Update the info of a by computing its posterior distribution

- (e) Repeat steps (b)-(d) until the max number of patients is reached.

Properties of CRM

Advantages of CRM

- 1.It is a model-based method with a clearly defined objective.
- 2.It treats more patients at doses closer to the target MTD and, hence, reduces the number of patients treated at ineffective dose levels.
- **3.Because more patients are treated around the target level, it gives more precise estimate of the Prob(tox) at MTD.**
- 4.Although CRM does not determine the lowest dose level and dose spacing, there is no restriction of treating patients only at pre-speci- fied doses. (e.g.: continuous infusion)

Disadvantages of CRM

- 1.It may be TOO AGGRESIVE. Patients may be treated at very high toxic doses in the early phase of the trial.
- 2. Success depends on the proper choice of the dose-toxicity curve and the prior distribution of its parameter(s).
- 3.Because of cohort size 1, it may take long time to complete a trial with high patient accruals.
- 4. Need special computer programs to implement the design.

- BOIN design combines the simplicity of the 3+3 design with the superior performance of more complicated, model-based designs, e.g., continuous reassessment method (CRM).
- BOIN makes the decision of dose escalation and de-escalation simply by comparing the observed DLT rate at the current dose with a pair of fixed, predetermined dose escalation and de-escalation boundaries.
- Has been used in >20 trials in MDA and NCL

Liu S and Yuan Y (2015) JRSS-C, 64, 507-523. Yuan Y, Hess K, Hilsenbeck, S & Gilbert M (2016), *Clinical Cancer Research*, 22, 4291-4301.

Escalation/Deescalation Boundaries

Table 1. Dose escal	ation and	de-escalat	ion bounda	ries			
			Target tox	icity rate fo	or the MTD		
Boundary	0.1	0.15	0.2	0.25	0.3	0.35	0.4
λ_{e} (escalation)	0.078	0.118	0.157	0.197	0.236	0.276	0.316
λ_{d} (de-escalation)	0.119	0.179	0.238	0.298	0.358	0.419	0.479

itatistics Software Dr. =		
C Secure https://	biostatistics.mdanderson.org/softwaredownload	\$
	Quan	titative Research Computing Software Online Site Contact Us
MDAnder Cancer Ce	rson Softwar	e Download Kiosk
Last Modified Date	Product Name	Brief Description
2017-06-09	BOIN Design Desktop Program	Bayesian Optimal Exterval (800N) design for phase I trials to find the maximum tolerated dose (MTO) for both single-agent and drug-conducation trials
2017-01-18	One Arm Time to Event Simulator	Design and simulate One-Arm Time-to-Event chrical trials using a Windows GUI
2017-01-13	Adaptive: Randomization	Outcome adaptive randomization for clinical trials
2016-09-14	BMA.CRM	Dose-finding software using the Bayesian Model Averaging Continual Reassesament Method, including Data Augmentation
2016-06-28	UAROET .	Phase I/II dose-finding with utility-based adaptive randomization and ontinal efficacy and toxicity.
2016-04-25	CATBUB Design	Categorical Outcome Utility-Based Designs for Randomized Comparative Direct Trials with Discrete Outcomes (formerly called 'BUB-Design')
2016-04-20	220ET	Phase I-II dose-par-finding based on utilities of 4-level ordinal efficacy and toxicity.
2015-09-23	WENN .	Wavelet-based functional mixed model software
2015-02-12	Beta Binomial Distribution Demo	A learning tool to demonstrate a beta-baromial distribution prior being updated to become a posterior distribution
2014-08-27	Pinnacle	A method for detection and quantification of protein spots from 2-D gel electrophoresis images.
2014-05-22	EffTox	Phase I/II dose-finding based on efficacy and toxicity
2014-04-01	Predictive Probabilities	Predictive probability interim analysis of clinical trials
2013-11-26	Inequality Calculator	Calculate the probability of one random variable being larger than another
2013-11-22	ParameterSolver	Solve for distribution parameters for common distributions
2013-07-25	🖼 Multo Lean	Monitoring toxicity and efficacy in phase II clinical trials
2013-01-09	Bayes Factor Binary	A Bayesian hypothesis test-based method for clinical trials with single arm binary patient outcomes
2012-12-11	TIEDesigner	Software for designing single arm safety monitoring trails with time-to-event endpoints
2012-10-05	Toxicity Probability Intervals	Dose-finding based on toxicity probability intervals
2012-06-06	Black&BAND	Block adaptive randomization
	HØ	In a set of the set of the

A semi-mechanistic dose-finding design in oncology using pharmacokinetic/pharmacodynamics modeling

Biostatistics faculty: Yisheng Li & Kim-Anh Do Biostatistics postdoc fellow: Xiao Su

- Motivation
- Feasibility
- Performance
- Conclusion

Need for more efficient early phase trial designs

- High failure rates in phase III cancer clinical trials
- Known and potential reasons:
 - Narrow therapeutic index of cancer treatments
 - Small sample sizes of early phase trials
 - Limitations of existing dose-response models:

 - Empirically based
 Difficulty in modeling schedule effects
 Difficulty in modeling effects of method of administration, including drug formulation, route of administration, and drug delivery system
 - Essence of the limitations: ignores the mechanism of the drug
 - A potential solution: mechanism-based dose-response
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A motivating Phase 1 trial at MD Anderson

st with metastatic or locally advanced solid tumors secretase inhibitor rug effect in vivo: blocks Notch signaling via v-secretase inhibition and produces a slower growing differentiation phenotype in human cancer cells

Treatment cycle: 10 days Five total doses per cycle: 10mg, 14mg, 20mg, 23mg, 31mg Method of administration: intravenous (IV) Four schedules: 3-, 4-, 5-, and 6-dosing regimen

ry goals: characterize the DLTs, overall safety, and Secondary objectives: characterize PK profiles

PK/PD modeling and relationship with clinical outcome

PK model:

- dynamic dose(schedule) concentration relationship
- characterizes what the body does to the drug

PD model:

- dynamic concentration-effect relationship
- characterizes what the drug does to the body

Model the full PK/PD profiles, and model its effect on the DLT prob

Proposed joint model represents a Dose Concentration Effect Intensity (Clinical) Outcome (DCEO) framework

Proposed design is a Semi-Mechanistic Dose-Finding (SMDF) design

Mechanism

Motivation: Mechanistic dose-response modeling

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 · の Q (?)

PK/PD profiles based on preclinical studies

- PK/PD modeling/profile information based on PK/PD data from preclinical studies
- Uncertainty quantification of the PK/PD profile information base on PK/PD data from *in vitro* and *in vivo* studies

PK/PD data in clinical trials

PK data almost always available in dose-finding trials
PD data often available for efficacy evaluation in phase I/II or phase II studies

Some notation

Drug administration time: $s = (s_1, s_2, ..., s_K)$ Drug administration dosage: $d = (d_1, d_2, ..., d_K)$ Dose of one administration: dTreatment regimen: $\tau = (d, s)$ Drug concentration in plasma at time t: c(t)Drug concentration in gastrointestinal tract: a(t) (when applicable) Volume of distribution of the drug in the body: VFirst-order elimination rate in one-compartment model: k_e First-order absorption rate in one-compartment model: k_a

(when applicable)

Some initial conditions, e.g., c(0) = d/V

PK models

- IV administration:
 - Drug concentration profile for a one-compartment model with IV administration:

$$dc(t)/dt = -k_ec(t), c(0) = d/V$$

Closed-form solution:

$$c(t) = \frac{d}{V}e^{-k_{e}t}$$

 Based on the superposition principle (Wang and Ouyang, 1998), we have:

$$c(t) = \sum_{k=1}^{K} \frac{d_k}{V} e^{-k_{\theta}(t-s_k)} I(t \ge s_k)$$

 Extravenous administration (EV): similarly developable based on solving c(t) (and a(t)) analytically from a system of two differential equations

PD model

One of the most commonly used PD model under steady-state conditions is the following sigmoid E_{max} -model:

$$e(t \mid \phi, \psi) = rac{E_{max} imes c(t \mid \phi)^{\gamma}}{EC_{50}^{\gamma} + c(t \mid \phi)^{\gamma}},$$

where $e(t \mid \phi, \psi)$ is the measured (or latent) effect, and $\psi = (E_{max}, EC_{50}, \gamma)$ are PD parameters, in particular, with EC_{50} being the concentration that causes 50% of the maximum effect E_{max} .

Additional notation

- A prespecified window for evaluating DLT: [0, t^{ref}]
- Drug cumulative effect up to time t: $\eta(t \mid \tau, \phi, \psi) = \int_0^t e[c(u \mid \tau, \phi); \psi] du$ For one-compartment model with IV administration:

$$\eta(t|\boldsymbol{\tau},\boldsymbol{\theta}) = \int_0^t \frac{\mathsf{Emax} \times \left(\sum_{j=1}^K \frac{d_j}{V_c} e^{-k_{10}(u-s_k)} I(u \ge s_k)\right)^{\gamma}}{\mathsf{ED}_{50}^{\gamma} + \left(\sum_{j=1}^K \frac{d_j}{V_c} e^{-k_{10}(u-s_k)} I(u \ge s_k)\right)^{\gamma}} du,$$

which has an analytical form;

► Toxicity probability within the window [0, *t^{ref}*] for patient *i*:

$$\pi_{\boldsymbol{\tau_i},\boldsymbol{\theta}} = \mathbf{1} - \exp\left[-\eta(t^{ref} \mid \boldsymbol{\tau_i}, \boldsymbol{\phi}, \boldsymbol{\psi})\right]$$

Recorded concentrations at times t_{ij}: X_{ij} ► Clinical outcome (DLT) for patient *i*: $Y_i \in \{0, 1\}$

		Dose(mg)	7	15	30	60	120			
	_	Toxicity	0.065	0.157	0.261	0.361	0.451	None	Tax	Npt
	SMDE	% Sel	0.01	0.10	0.50	0.31	0.078	0.00	0.26	29.95
	SMDT	# Pts	3.69	5.91	11.03	6.87	2.44			
	CRM1	# Pts	4.24	0.10	9.38	0.38	2.95	0.00	0.26	30.00
		% Sel	0.00	0.13	0.51	0.31	0.05	0.00	0.25	30.00
Scenario 1	CRM2	# Pts	3.91	6.42	11.59	6.37	1.71			
	ROIN	% Sel	0.01	0.18	0.41	0.30	0.10	0.00	0.24	29.97
	DON	# Pts	4.32	8.20	9.75	5.68	2.02			
	mTPI	# Pts	4.17	0.17	10.33	0.29	0.08	0.00	0.24	29.97
		% Sel	0.10	0.34	0.34	0.17	0.06	0.00	0.20	30.00
	PKPOP	# Pts	6.39	10.97	9.33	3.45	0.86			
		Toxicity	0.167	0.301	0.426	0.536	0.627	None	Tax	Npt
	CHOS	% Sel	0.16	0.59	0.22	0.01	0.00	0.02	0.30	29.66
	SMUP	# Pts	8.32	13.40	6.73	1.05	0.15			
	CRM1	% Sel	0.19	0.52	6.92	0.02	0.00	0.01	0.30	29.79
		% Sel	0.18	0.57	0.22	0.02	0.00	0.01	0.30	29.71
Scenario 2	CRM2	# Pts	9.78	12.26	6.46	1.12	0.10			
	DO:N	% Sel	0.23	0.53	0.18	0.03	0.00	0.02	0.29	29.58
	BOIN	# Pts	10.84	12.37	5.09	1.15	0.13			
	mTPI	% Sel	0.24	0.51	0.20	0.03	0.00	0.01	0.28	29.61
		% Sel	0.49	0.38	0.12	0.01	0.00	0.01	0.24	29.89
	PKPOP	# Pts	15.94	10.55	3.09	0.29	0.01			
· · ·		Toxicity	0.001	0.010	0.094	0.301	0.500	None	Tax	Npt
	CHIDE	% Sel	0.00	0.00	0.08	0.74	0.18	0.00	0.24	30.00
	SMUP	# Pts	3.00	3.02	4.99	13.11	5.89			
	CRM1	% Sel	0.00	0.00	0.12	0.62	0.27	0.00	0.26	30.00
		% Sel	0.00	0.00	0.09	0.72	0.19	0.00	0.25	30.00
Scenario 3	CRM2	# Pts	3.00	3.02	4.96	13.12	5.90	0.00	0.20	00.00
	nom	% Sel	0.00	0.00	0.17	0.67	0.16	0.00	0.22	30.00
	BOIN	# Pts	3.00	3.23	7.50	11.41	4.85			
	mTPI	% Sel	0.00	0.00	0.17	0.66	0.17	0.00	0.22	30.00
		% Sel	0.00	0.01	0.28	0.60	0.12	0.00	0.19	30.00
		10 000	0.00	2.01	8.99	11.63	278	0.00	0.10	00.00

		Taxicity	0.126	0.166	0.207	0.252	0.298	None	Tax	Np
	SMDF	% Sel # Pts	0.01	0.11	0.28	0.29	0.32	0.00	0.21	29.
	CRM1	% Sel # Pts	0.02	0.08	0.26	0.29	0.35	0.00	0.21	29.
Scenario 4	CRM2	% Sel # Pts	0.02	0.14	0.33	0.29	0.21	0.20	0.20	29.
	BOIN	% Sel # Pts	0.04	0.13	0.21	0.28	0.35 4.65	0.01	0.20	29.
	mTPI	% Sel # Pts	0.05	0.15 7.55	0.23 6.78	0.28 5.24	0.27 3.88	0.01	0.20	29.
	PKPOP	% Sel # Pts	0.03 3.78	0.34 12.35	0.27 7.33	0.17 3.67	0.20 2.88	0.00	0.20	30.
		Taxicity	0.419	0.509	0.586	0.656	0.716	None	Tax	Np
	SMDF	% Sel # Pts	0.32 15.09	0.04 3.20	0.00 0.48	0.00	0.00	0.63	0.44	18.
	CRM1	% Sel # Pts	0.49 19.47	0.03 2.28	0.00	0.00	0.00	0.47	0.43	22.
Scenario 5	CRM2	% Sel # Pts	0.53 20.01	0.02	0.00	0.00	0.00	0.45	0.44	21.
	BOIN	% Sel # Pts	0.40 16.61	0.05	0.00	0.00	0.00	0.55	0.43	20.
	mTPI	% Sel # Pts	0.41 10.96	0.07	0.00	0.00	0.00	0.51	0.37	14
	РКРОР	% Sel # Pts	0.47	0.06	0.00	0.00	0.00	0.47	0.43	23.

True MTD is highest dose, Toxicity of fourth dose level close to that of true MTD

Max SS=30: CRM1 and BOIN select true MTD with highest prob, SMDF is third best , selection prob close to CRM1/BOIN Selection prob of CRM2, PKPOP designs much lower (approx. 0.2)

Max SS=20: CRM1 select true MTD with highest prob, SMDF is third best

Scenario 5: All dose levels are toxic A satisfactory design should recommend "inconclusive" with high prob

Frecommends "inconclusive" with high prob

Pts: wereage number of patients allocated at each dose None: probability of inconclusive trials Too: average percentage of patients experiencing toxicity Npt: average number of patients in the trial CRM1: CRM design using initial guess (0.123, 0.24, 0.30, 0.402, 0.501) CRM2: CRM design using initial guess (0.062, 0.160, 0.300, 0.453, 0.594)

		Dose(mg)	34.65	44.69	60.81	83.69	100.37			
		Taxicity	0.038	0.079	0.166	0.303	0.399	None	Tox	Np
		% Sel	0.00	0.01	0.22	0.48	0.29	0.00	0.24	29.9
	SMDF	# Pts	3,45	3.56	6.99	8.68	7.23			
		% Sel	0.00	0.01	0.17	0.49	0.33	0.00	0.24	30.0
	CHM1	# Pts	3.51	3.60	6.42	9.45	7.02			
	CRMA	% Sel	0.00	0.01	0.22	0.54	0.23	0.00	0.22	30.0
Scenario 1	CHW2	# Pts	3.47	3.89	8.16	9.53	4.96			
	ROIN	% Sel	0.00	0.02	0.25	0.48	0.25	0.00	0.21	30.0
	0011	# Pts	3.53	4.73	8.24	8.72	4.77			
	mTPI	% Sel	0.00	0.02	0.26	0.49	0.23	0.00	0.21	30.0
		# Pts	3.55	4.82	8.15	9.12	4.35			
	PKPOP	% Sel	0.08	0.09	0.23	0.33	0.28	0.00	0.19	30.0
		# Pts	0.42	0.004	7.30	0.52	5.00		Ŧ	bl-s
		laxicity	0.158	0.261	0.420	0.601	0.697	NA	lox	Npt
	SMDF	% Sel # Pts	0.16	0.53	0.25	0.01	0.00	0.04	0.29	28.9
		0/ Cal	0.10	0.52	0.99	0.01	0.00	0.01	0.20	20.6
	CRM1	# Pts	8.74	10.92	8.10	1.80	0.10	0.01	0.30	23.0
		% Sel	0.11	0.57	0.30	0.01	0.00	0.01	0.29	29.7
Scenario 2	CRM2	# Pts	8.54	12.00	7.90	1.26	0.05		0.20	
		% Sel	0.16	0.51	0.29	0.02	0.00	0.02	0.28	29.5
	BOIN	# Pts	9.21	12.02	6.96	1.27	0.06			
		% Sel	0.16	0.50	0.29	0.02	0.00	0.02	0.28	29.5
	mTPI	# Pts	9.08	12.08	7.19	1.15	0.06			
		% Sel	0.30	0.42	0.24	0.02	0.01	0.01	0.26	29.6
	PKPOP	# Pts	11.85	10.96	5.78	0.87	0.13			
		Taxicity	0.419	0.563	0.725	0.854	0.906	NA	Tox	Npt
		% Sel	0.37	0.01	0.00	0.00	0.00	0.63	0.44	18.3
	SMDF	# Pts	15.80	2.03	0.46	0.02	0.00			
		% Sel	0.52	0.02	0.00	0.00	0.00	0.46	0.44	22.3
	CHM1	# Pts	19.68	2.23	0.41	0.02	0.00			
		% Sel	0.54	0.02	0.00	0.00	0.00	0.44	0.44	23.0
Scenario 3	CHM2	# Pts	20.24	2.38	0.41	0.02	0.00	No. of	1010	
	ROIN	% Sel	0.42	0.02	0.00	0.00	0.00	0.57	0.44	20.0
	BOIN	# Pts	17.14	2.71	0.21	0.00	0.00			
	- 701	% Sel	0.46	0.03	0.00	0.00	0.00	0.51	0.38	14.8
	miPi	# Pts	12.02	2.62	0.17	0.00	0.00			
	DKDOD	% Sel	0.44	0.06	0.00	0.00	0.00	0.50	0.44	21.4
	PRPUP	# Pts	18.23	2.88	0.26	0.02	0.00			

25

TABLE 3 (Continued)

		Toxicity	0.019	0.042	0.099	0.202	0.283	NA	Tox	Npt
		% Sel	0.00	0.00	0.02	0.23	0.74	0.00	0.19	29.97
	SMDF	# Pts	3.16	3.08	4.01	6.34	13.39			
		% Sel	0.00	0.00	0.02	0.19	0.79	0.00	0.19	30.00
	CRM1	# Pts	3.17	3.11	4.02	6.57	13.13			
		% Sel	0.00	0.00	0.04	0.31	0.65	0.00	0.18	30.00
Scenario 4	CHM2	# Pts	3.16	3.21	4.84	8.18	10.61			
		% Sel	0.00	0.00	0.04	0.31	0.65	0.00	0.17	30.00
	BOIN	# Pts	3.17	3.64	5.33	7.96	9.91			
	-	% Sel	0.00	0.00	0.05	0.34	0.61	0.00	0.17	30.00
	mTPI	# Pts	3.18	3.70	5.22	8.34	9.56			
	BKBGB	% Sel	0.06	0.04	0.11	0.2	0.60	0.00	0.16	30.00
	PKPOP	# Pts	4.60	4.35	5.66	5.73	9.66			

%Sel: selection probability # Pts: average number of patients allocated at each dose None: probability of inconclusive trials Tox: average percentage of patients experiencing toxicity Npt: average number of patients in the trial CRM1: CRM designs using initial guess (0.123, 0.204, 0.300, 0.402, 0.501) CRM2: CRM designs using initial guess (0.062, 0.160, 0.300, 0.453, 0.594)

Scenario 4 : True MTD is at the highest dose level, CRM1 selects true MTD with highest prob, Performance of SMDF is close to that of CR

13		Dose(mg)	34.65	44.69	60.81	83.69	100.37			
		Toxicity	0.038	0.079	0.166	0.303	0.399	None	Tox	Npt
	SMDF	% Sel # Pts	0.00	0.03	0.24	0.39	0.33	0.00	0.23	19.93
	CDM	% Sel	0.00	0.03	0.21	0.38	0.38	0.00	0.23	20.00
	CHWI	# Pts	2.44	2.91	4.48	5.28	4.90	0.00	0.21	20.00
Scenario 1	CRM2	# Pts	2.40	3.18	5.37	5.65	3.40	0.00	0.21	20.00
	BOIN	% Sel # Pts	0.00	0.07	0.32	0.39	0.21	0.00	0.19	20.00
		% Sel	0.01	0.06	0.27	0.34	0.31	0.00	0.21	19.96
	mIPI	# Pts	2.48	3.52	5.23	5.02	3.71			
	PKPOP	# Pts	3.24	3.91	4.65	4.22	3.97	0.00	0.20	19.98
-	2	Taxicity	0.158	0.261	0.420	0.601	0.697	NA	Так	Npt
	SMDF	% Sel # Pts	0.20	0.44	0.28	0.04	0.00	0.04	0.30	19.31
	COM	% Sel	0.18	0.45	0.31	0.04	0.00	0.02	0.30	19.69
	Gravit	# Pts % Sel	0.16	0.49	4.67	0.03	0.32	0.01	0.29	19.88
Scenario 2	CRM2	# Pts	6.31	7.47	4.77	1.21	0.13			
	BOIN	% Sel # Pts	0.21	0.49	0.25	0.0.	0.00	0.03	0.27	19.6
	TDI	% Sel	0.21	0.40	0.31	0.01	0.00	0.04	0.29	19.28
	mier	# Pts % Sel	6.12	7.15	4.62	1.24	0.14	0.04	0.29	19.41
	PKPOP	# Pts	6.65	7.05	4.28	1.19	0.23	0.01	0.20	
		Toxicity	0.419	0.563	0.725	0.854	0.906	NA	Tox	Npt
	SMDF	# Pts	10.45	2.09	0.00	0.00	0.00	0.55	0.45	13.13
	CRM1	% Sel # Pts	0.54	0.05	0.00	0.00	0.00	0.41	0.44	15.22
Scenario 3	CRM2	% Sel # Pts	0.60	0.06	0.00	0.00	0.00	0.34	0.44	16.49
	BOIN	% Sel	0.51	0.04	0.00	0.00	0.00	0.45	0.44	14.76
	mTPI	% Sel	0.47	0.07	0.00	0.00	0.00	0.46	0.40	10.82
		# P1S % Sel	0.44	0.09	0.38	0.03	0.00	0.47	0.45	14.00
	PKPOP	# Pts	10.44	3.06	0.44	0.05	0.00			

26

TABLE 4 (Continued)

		Toxicity	0.019	0.042	0.099	0.202	0.283	None	Tox	Npt
	SMDF	% Sel # Pts	0.00	0.00	0.06	0.25	0.69 8.49	0.00	0.18	19.96
	CBM1	% Sel	0.00	0.00	0.04	0.26	0.70	0.00	0.18	20.00
		# Pts % Sel	0.00	0.00	0.08	4.39 0.31	0.61	0.00	0.17	20.00
Scenario 4	CRM2	# Pts	2.11	2.46	3.62	5.15	6.66			
	BOIN	% Sel # Pts	0.00 2.32	0.02 3.07	0.13 4.45	0.35 5.06	0.50 5.10	0.00	0.15	20.00
	mTPI	% Sel # Pts	0.00 2.14	0.02 2.65	0.12 3.84	0.26 4.70	0.60 6.67	0.00	0.17	20.00
	PKPOP	% Sel # Pts	0.04 2.67	0.05 2.97	0.10 3.62	0.20 3.88	0.61 6.85	0.00	0.16	20.00

%Sel: selection probability

Pts: average number of patients allocated at each dose

None: probability of inconclusive trials

Tox: average percentage of patients experiencing toxicity

Npt: average number of patients in the trial CRM1: CRM designs using initial guess (0.123, 0.204, 0.300, 0.402, 0.501) CRM2: CRM designs using initial guess (0.062, 0.160, 0.300, 0.453, 0.594)

Simulation results summary

SMDF design improves identification of MTD in most scenarios when true data generating process is similar, yet still different from , the IV+Emax model.

Although CRM designs may perform best in some scenarios, their performance may be sensitive to the choice of the skeleton

If the true data generating model is considerably different from the IV+Emax model, CRM designs using 2 initial guesses outperform the other 4 designs in scenarios 1 and 2, but perform worse in scenarios 3 and 4

In scenarios where CRM performs best, SMDF performs second best

Overall, SMDF design performs better than CRM, BOIN, mTPI, and PKPOP designs considering both the efficiency and robustness of the MTD allocation, as well as patient allocation.

DCEO framework facilitates better learning of the dose-toxicity curve,

		Maxi	mum Sa	mple Size	e=30	Maxi	mum Sa	mple Size	e=20
True Model	Scenario	SM	DF	PKP	OP	SM	DF	PKP	OP
		Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE
	1	0.006	0.007	-0.017	0.025	0.017	0.010	-0.017	0.037
	2	0.021	0.013	-0.010	0.030	0.019	0.020	-0.005	0.046
IV+5PI	3	0.017	0.005	-0.001	0.014	0.025	0.006	0.000	0.022
	4	0.001	0.009	-0.047	0.021	0.015	0.015	-0.038	0.029
	5	0.069	0.026	0.016	0.020	0.069	0.035	0.002	0.035
	1	0.023	0.007	-0.017	0.016	0.025	0.010	-0.012	0.026
	2	0.034	0.019	0.007	0.040	0.034	0.028	0.026	0.067
Ursino	3	0.102	0.043	0.086	0.052	0.115	0.064	0.137	0.098
	4	0.022	0.005	-0.017	0.010	0.024	0.007	-0.013	0.016

Investigate performance of estimation of dose toxicity curves

Ursino et al (2017) demonstrated improved performance of estimation of dose-toxicity curves using their proposed designs , including the PKPOP design, over conventional designs Table 5 compares bias and MSE of the estimated toxicity prob corresponding to tried dose levels using SMDF and PKPOP models

Conclusion: SMDF model estimated the toxicity probabilities with slightly lower MSE and comparable bio

5 | APPLICATION

We illustrate the SMDF design by applying it to the setting of the phase I trial of the γ -secretase inhibitor for metastatic or locally advanced solid tumors. We consider a hypothetical realization of the trial under the SMDF design, generating drug concentration data and outcomes using the IV + Emax model as shown in (17). The protocol allows for Q = 5 total dose levels of 7mg, 15mg, 30mg, 60mg and 120mg. The drug is administered by IV in a 28-day treatment cycle with a once-weekly treatment schedule. The primary objective of the study is to identify the MTD, defined as the dosage with the probability of DLT closest to the target $\phi = 0.3$. Characterization of the *s* (1, 3, 5, 10, 12, 24) hours after the first dosing. A maximum of n = 30 patients can be enrolled.

Figure 1 summarizes the allocation history of the hypothetical realization of the trial. The selected MTD is 15mg, which is the second dose level as the dash line indicated. A total of 12 patients are treated at the MTD, with 6 of these 30 patients experiencing DLT. The numbers above each point are the observed data for each new allocated cohort. The numbers before the slash is the number of patients experiencing DLT for the new cohort while the numbers after the slash is the number of patients allocated at the dose level for the new cohort.

Remarks

- We proposed a new modeling framework for the relationship for dose-finding designs in single- and multiple-schedule
- The proposed modeling framework and resulting designs look feasible and perform well, as compared to select common phase I designs
- The proposed modeling framework can be readily extended to a large number of early phase clinical trial settings
 Examples of some interesting issues in the extension of the
- - Availability of analytic solutions to the system of differential equations that characterize the PK profiles, especially in population PK modeling
 Applicability of superposition principle
 Properties of the baseline hazard function when modeling time-to-event outcomes

Motivation to Integrate Different Data Platforms

- The genome on its own "has turned out to be a relatively poor source of explanation for the differences between cells or between people"
- The clinical management of cancer
- Distinct data types provide a different,
 Cancer gene

- Biological complexity requires multi-dimensional and multi-system analysis
- Biological analysis requires an appreciation of context
- **Understanding Cancer's Complexity**
- sis

32

nways		
We focu	us on 12 p	bathways
lementary	Table S2. Pat	hways and gene/protein names
	Pathway	Ganar
1	Pathway Apoptosis	Genes BAK1 BAX BID BCI2111 CASP7 BAD BCI2 BCI211 BIRC2
1	Pathway Apoptosis Breast reactive	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1. MYH11. RAB11A. RAB11B. CTNNB1. GAPDH. RBM15
1 2 3	Pathway Apoptosis Breast reactive Cell cycle	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1
1 2 3 4	Pathway Apoptosis Breast reactive Cell cycle Core reactive	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7
1 2 3 4 5	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1
1 2 3 4 5 6	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re EMT	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1 FN1, CDH2, COLGA1, CLDN7, CDH1, CTNNB1, SERPINE1
1 2 3 4 5 6 7	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re EMT PI3K/AKT	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1 FN1, CDH2, COLGA1, CLDN7, CDH1, CTNNB1, SERPINE1 AKT1, AKT2, AKT3, GSK3A, CGK3B, COKN1B, AKT151, TSC2, INPP4B, PTEN
1 2 3 4 5 6 7 8	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re EMT PI3K/AKT RAS/MAPK	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1 FN1, CDH2, COL6A1, CLDN7, CDH1, CTNNB1, SERPINE1 AKT1, AKT2, AKT3, GSK3A, GSK3B, CDKN1B, AKT1S1, TSC2, INPP4B, PTEN ARAF, JUN, RAF1, MAPK8, MAPK1, MAPK3, MAPXL1, MAPK14, RP56KA1, YBX1
1 2 3 4 5 6 7 8 9	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re EMT PI3K/AKT RAS/MAPK RTK	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1 FN1, CDH2, COL6A1, CLDN7, CDH1, CTNNB1, SERPINE1 AKT1, AKT2, AKT3, GSK3A, GSK3B, CDKN1B, AKT1S1, TSC2, INPP4B, PTEN ARAF, JUN, RAF1, MAPK8, MAPK1, MAPK3, MAP2K1, MAPK14, RPS6KA1, YBX1 EGFR, ERBB2, ERBB3, SHC1, SRC
1 2 3 4 5 6 7 8 9 10	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re EMT PI3K/AKT RAS/MAPK RTK TSC/mTOR	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1 FN1, CDH2, COL6A1, CLDN7, CDH1, CTNNB1, SERPINE1 AKT1, AKT2, AKT3, GSK3A, GSK3B, CDKN1B, AKT1S1, TSC2, INPP4B, PTEN ARAF, JUN, RAF1, MAPK8, MAPK1, MAPK3, MAP2K1, MAPK14, RPS6KA1, YBX1 EGFR, ERB82, ERB83, SHC1, SRC EIF4EBP1, RP56KB1, MTOR, RPS6, RB1
1 2 3 4 5 6 7 8 9 10 11	Pathway Apoptosis Breast reactive Cell cycle Core reactive DNA damage re EMT PI3K/AKT RAS/MAPK RTK TSC/mTOR Hormone recep	Genes BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2 CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15 CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1 CAV1, CTNNB1, RBM15, CDH1, CLDN7 TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1 FN1, CDH2, COL6A1, CLDN7, CDH1, CTNNB1, SERPINE1 AKT1, AKT2, AKT3, G5K3A, G5K3B, CDKN1B, AKT151, TSC2, INPP4B, PTEN ARAF, JUN, RAF1, MAPK8, MAPK1, MAPK3, MAP2K1, MAPK14, RP56KA1, YBX1 EGFR, ERBB2, ERBB3, SHC1, SRC EIF4EBP1, RP56KB1, MTOR, RP56, RB1 ESR1, PGR, AR

Rewiring protein signaling pathways in cancer

We investigate cancer-specific integrated networks across all cancer sites.

Aim 1: Pathway activity

The pathway activity is measured by the connectivity in the corresponding integrated network. If the pathway contains p number of proteins, the connectivity is defined by

Connectivity score = $\frac{\text{number of edges between proteins}}{\text{total number of possible edges, }},$

where $0 \leq \text{Connectivity score} \leq 1$. Higher connectivity score means higher pathway activity (more cross signaling between proteins).

Aim 2: Edge consistency

We investigate tumor-specific/conserved edges. For an edge, the number of cancer sites that hold the edge are measured.

Departmental goals for the next five years

- Retain and recruit faculty, researchers, and analysts to implement established and new impactful research areas (faculty recruitment committees consist of external members)
- Maintain and increase if possible the current competitive level of external research funding. Plan for a P01 in biostatistics methodology for impactful research areas
- Continue to engage with local institutions, including GSBS, Rice University, and Texas A&M University to strengthen our joint graduate programs, with emphasis on innovative courses and more effective recruitment processes to attract students with excellent quantitative skills
- > The microbiome is an important factor in gene-environmental interactions that influence human disease susceptibility. Improve our methodology & collaborative research regarding the human microbiota as it relates to cancer development, antitumor immune responses, imaging modalities, and clinical efficacy of immunotherapies and other cancer treatments, and increase efforts in biomarker-driven clinical trial designs

