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Crocker’s Rules

I I declare myself to be operating by Crocker’s Rules
I This means that you are allowed to optimize your feedback for
clarity of information, not for being nice to me.

I If I’m offended by your question or comment, it is my own
fault.

I Crocker’s Rules do not imply reciprocity. This is done for
myself, to maximize information received.



Background

I Randomized trials are often conducted in populations that
differ systematically from the populations in which the results
will be used to inform clinical decisions.

I Treatment effects often differ between populations
I Several different statistical methods have been proposed to
standardize findings from the experimental study population s
to a different target population t

I Less attention has been given to how one should reason about
which covariates V need to be standardized over



Notation and Setup

I This presentation is motivated by the following problem:
I Wehave experimental evidence for the causal effect of
treatment with drug A on binary outcome Y in the study
population (P = s)

I Wewish to predict the effect of introducing the treatment in
the target population (P = t), in which we can only collect
observational data.

I The drug is not currently available in the target population



Notation and Setup

I Because we have a randomized trial in population s, the
baseline risk Pr(Ya=0 = 1|P = s), and the risk under treatment
Pr(Ya=1 = 1|P = s), are identified from the data

I Since treatment is currently not available in population t,
everyone in that population is currently untreated, and the
baseline risk is therefore identified from the data:
Pr(Ya=0 = 1|P = t) = Pr(Y = 1|P = t).

I Our goal is to use this information, in combination with
subject matter knowledge, to predict Pr(Ya=1 = 1|P = t).

I Subject matter knowledge =Homogeneity assumption?



Approaches to Effect Homogeneity

I Any attempt to extrapolate the findings from population s to
population twill depend on a belief that something - for
example a conditional effect parameter - in population t is
equal to the corresponding parameter in population s

I Our conclusions depend heavily on what parameter we
assume is equal between the populations - that is, on howwe
operationalize effect homogeneity.



Approaches to Effect Homogeneity

The following definitions of effect homogeneity have been
proposed:

I Effect Homogeneity inMeasure
I RDs = RDt
I RRs = RRt
I ORs =ORt

I Effect Homogeneity in Distribution
I Ya ⊥⊥ P | V = v ("S-ignorability")
I Ya ⊥⊥ Pa | Va = v ("S-admissibility")

I Homogeneity of COST Parameters
I Ya=1 ⊥⊥ P | Ya=0,V = v



Approaches to Effect Homogeneity

I The goal of this presentation is to provide a framework for
understanding what assumptions the different options for
operationalizing effect homogeneity make about the
underlying biology.

I This will enable investigators to reason about which set of
conditions is most closely approximated in the specific context
of their own study.



Outline of Presentation

I We first review the shortcomings of traditional definitions
based on conditional homogeneity of effect measures

I We then discuss approaches based on effect homogeneity in
distribution, with a particular emphasis on Bareinboim and
Pearl’s graphical models for transportability, and show how
these graphs make strong assumptions that are often violated
in realistic settings.



Outline of Presentation

I We then propose a new approach based on Counteractual
Outcome State Transition parameters, which links the choice
of effect measure to a counterfactual causal model.

I We show how these parameters can be used to encode
background beliefs about the underlying biological processes.

I If the COST parameters are equal between population, there
are important implications for model choice, meta-analysis
and research generalization.



Part 1

Shortcomings of StandardMeasures of Effect



NoBiological Interpretation

I No biologically plausible model has been proposed that would
guarantee (conditional) homogeneity of either the risk
difference, risk ratio or odds ratio.



Logically Invalid Predictions

I The risk ratio and risk difference (but not the odds ratio) may
make predictions outside the range of logically valid
probabilities



Zero-bounds

I The odds ratio has a "zero bound" if the baseline incidence in
the target population is 0 or 1: Regardless of the data from
the trial, the investigator is doomed to conclude that
treatment has no effect in population t

I The risk ratio has one such zero bound, at T0 = 0.



Non-collapsibility

I The odds ratio is non-collapsible.
I In other words, the marginal value of the odds ratio may not
be a weighted average of the stratum-specific odds ratios
under any weighting scheme, even in the absence of
confounding or other forms of structural bias.



Baseline Risk Dependence

I If the risk difference, the risk ratio or the odds ratio is equal
across the populations, then the proportion of the population
that responds to treatment is required to be a function of the
baseline risk.



Asymmetry
I If we use a risk ratio model, our empirical predictions are not
invariant to how the outcome variable is encoded in the
database: The conclusions depend strongly on whether we
count the living or the dead.

I This asymmetry can equivalently be conceptualized in terms
of two separate risk ratio models:

RR(−) = Pr(Ya=1 = 1)Pr(Ya=0 = 1)

RR(+) = 1− Pr(Ya=1 = 1)1− Pr(Ya=0 = 1)



StandardMeasures of Effect

Table: Different effect measuresmay result in different predictions based
on the same data

RR(-) RR(+) RD OR

Baseline risk in trial 2% 2% 2% 2%
Treated risk in trial 3% 3% 3% 3%
Effect RR(-)=1.5 RR(+)=0.99 RD=0.01 OR=1.515
Baseline risk in target population 10% 10% 10% 10%
Predicted risk in target population 15% 10.9% 11% 14.4%



Previous suggestions
I Previous suggestions in the literature:

I MCSheps suggested using RR(-) if treatment reduces
incidence and RR(+) if treatment increases incidence (NEJM
1956)

I Jon Deeks provided empirical evidence for the same idea
(Statistics inMedicine, 2002)

I Glasziou and Irwig suggested considering "relative benefits
and absolute harms" (BMJ, 1995)

I We agree with all these approaches (which we show are
closely related).

I Yet most investigators continue to always use RR(-)
I In these papers, we provide a causal model that allows us to
represent the biological background knowledge which led to
these suggestions in formal counterfactual notation.



Part 2

Effect Homogeneity in Distribution



Effect Homogeneity in Distribution

I One potential response to these shortcomings might be to
abandon effect measures altogether, and reason about the
counterfactual distributions f(Ya=0) and f(Ya=1) separately

I For example, we can define effect homogeneity as
"S-Ignorability":

Ya ⊥⊥ P | V = v
I Bareinboim and Pearl’s causal diagrams for transportability
are an example of this approach

I This approach is elegant, complete andmathematically
sophisticated



Effect Homogeneity in Distribution

I However, as with any approach that relies on effect
homogeneity in distribution, the transportation diagrams rely
on strong assumptions:

I Unless the investigator has accounted for
all causes of the outcome Y that differ between the study
population and the target population, the model is not an
accurate approximation of the data generating mechanism.

I This differs from approaches based on effect measures,
where it may be sufficient to account for all variables that are
associated with the effect of A on Y.



Effect Homogeneity in Distribution
I Suppose we have data from a randomized trial on the effect of
placebo vs standard of care on coronary heart disease in men,
and we have concluded that there is no effect.

I Now suppose wewish to make predictions about the effects
of placebo in women.

I If we believe there are causes of CHD that are differently
distributed betweenmen and women, then if we use an
approach based on effect homogeneity in distribution, we are
forced to conclude that we canmake no predictions about the
effect in women.

I In contrast, if we use an approach based on effect
homogeneity in measure, we can instead try to account for all
variables that are associated with the effect of placebo.



Effect Homogeneity in Distribution

I The assumption of conditional effect homogeneity in
distribution is strong, testable and often empirically violated:

I Any regression model that justifies the absence of an
interaction term beta3 × A× P by invoking conditional effecthomogeneity in distribution is known to bemisspecified if the
main effect of P is not equal to zero.

I If the approaches based on the risk difference, risk ratio and
odds ratio result in different predictions, we can falsify Pearl’s
model.

I If the conditional baseline risk in the two populations differ, we
can also falsify Pearl’s model.



Effect Homogeneity in Distribution

I An approach based on effect homogeneity in distribution
suggests doing meta-analysis in the control arm separately
frommeta-analysis in the active arm.

I This approach arguably throws away randomization(?)



Part 3

Introducing Counterfactual Outcome State Transition parameters



Basic idea
I In the following, we will link beliefs about the relevant biology to
a counterfactual causal model.

I This causal model can in some settings be used to determine
the choice effect measure, such that we don’t have to go all
the way to effect homogeneity in distribution.

I For example: If an adverse reaction associated with drug A is
determined by unmeasured gene X, and the distribution of
this gene is equal between two populations, then RR(+), and
not the standard risk ratio RR(-), will be equal between those
two populations.

I Ourmodel formalizes the counterfactual theory that
underlies this argument, thereby clarifying the scope and
limits of the line of reasoning.



COST Parameters

I Counterfactual Outcome State Transition parameters are effect
measures based on the probability of switching outcome state
in response to treatment.



COST Parameters

I G is defined as the probability of being a case under treatment,
among those whowould have been cases under no treatment.

G = Pr(Ya=1 = 1|Ya=0 = 1)
I In a deterministic model, this can be interpreted as the
fraction who are ‘Doomed”, among those who are either
“Doomed” or “Preventative”



COST Parameters

I H is defined as the probability of not being a case under
treatment, among those whowould not have been cases
under no treatment.

H = Pr(Ya=1 = 0|Ya=0 = 0)
I In a deterministic model, this can be interpreted as the
proportion who are “Immune”, among those who are either
“Immune” or “Causal”



COST Parameters

I The effect of introducing treatment in population t is said to
be equal to the effect of introducing treatment in population s
if and only ifGt = Gs andHt = Hs.

I Note that this can equivalently be written as Ya=1 ⊥⊥ P | Ya=0,
similar to the notation used by Gechter (Working paper,
2016)



COST Parameters

I This definition of effect equality resolves all major
shortcomings of standard effect measures: The underlying
parameters are symmetric, collapsible, have no zero
constraints, do not make predictions outside valid
probabilities, and are not baseline risk dependent.

I The definition does however have amajor drawback: The
COST parameters are not identified from the data without
further assumptions



Identification of COST Parameters

I The key condition that is necessary for identification is
monotonicity.

I If treatment monotonically reduces incidence,H = 1whereas
if treatment monotonically increases incidence,G = 1.

I The plausibility of the monotonicity condition varies
depending on the specific scientific context. For example, it is
often a plausible approximation in the case of certain side
effects of drugs.



Identification of COST Parameters

I If treatment monotonically reduces the incidence of the
outcome,G is identified from the data of a randomized trial
and is equal to the standard risk ratio, RR(−)

I If treatment monotonically reduces the incidence of the
outcome and the effects are equal in the sense defined in this
paper, RR(−)s = RR(−)t

I If the effects are equal and treatment reduces the incidence
of the outcome but not monotonically so, RR(−)s is a biased
estimate of RR(−)t. We prove results on the direction and
magnitude of the bias, as a function of the extent of
non-monotonicity and of the differences in baseline risks in
the two populations.



Identification of COST Parameters

I If treatment monotonically increases the incidence of the
outcome,H is identified from the data of a randomized trial
and is equal to the recoded risk ratio, RR(+)

I If treatment monotonically increases the incidence of the
outcome and the effects are equal in the sense defined in this
paper, RR(+)s = RR(+)t

I If the effects are equal and treatment increases the incidence
of the outcome but not monotonically so, RR(+)s is a biased
estimate of RR(+)t.



Asymmetry of COST Parameters

I Unfortunately, COST parameters are not symmetric to the
coding of the exposure variables

I In other words, instead of using the definition Ya=1 ⊥⊥ P | Ya=0,
we could have assumed Ya=0 ⊥⊥ P | Ya=1

I This would have led to results that are reversed from those
discussed on the last slide.



Asymmetry of COST Parameters

I Wewill refer to the condition Ya=1 ⊥⊥ P | Ya=0, as "Equality of
the Effect of Introducing Treatment"

I Similarly, we wil refer to the condition (Ya=0 ⊥⊥ P | Ya=1 as
"Equality of the Effect of Removing Treatment"

I Wenext proceed to show that it is possible to reason, based
on biological a priori knowledge, about which effect measure
is more likely to be constant across populations.



Asymmetry of COST Parameters

I Consider a situation where the effect of treatment with A is
fully explained by a variable X

I For example, if A is an antibiotic, Xmay be a bacterial gene
I Beliefs about these biological processes can be encoded as
restrictions on the distribution of the counterfactuals Ya,x.



Asymmetry of COST Parameters

I Wewill assume that A has no effect in the absence of X, that X
is equally distributed in the two populations, and that X is
independent of the baseline risk.

I If we further believe that X has no effect in the absence of
exposure with A, but prevents the outcome in the presence of
A, then we expect equality of the effect of introducing
treatment.

I If we instead assume that X has no effect in the presence of A,
we get equality of the effect of removing treatment.



Asymmetry of COST Parameters

I In manymedical applications, such as treatment with
antibiotics or adverse reactions to drugs, arguments can be
made that the first type of effect equality is more likely than
the second

I Evolutionary arguments also support equality of the effect of
introducing the drugs over the alternative.



Empirical predictions
I If there is equality of the effects of introducing a drug,
meta-analysis based on RR(-) will be more homogenuous for
drugs that decrease the incidence of Y, whereas meta-analysis
based on RR(+) will be more homogenuous for exposures that
increase the incidence

I This was shown empirically by Deeks in 2002
I However, there are conceptual problems related to
differential power of standard tests for heterogeneity on
RR(-) and RR(+) scales.

I A new statistical test for heterogeneity may need to be
developed

I In contrast to Cochran’s Q and the I-statistic, this can not be
based on the absolute deviations from the overall
meta-analytic effect estimate.



Overview ofWorking Papers
I "The Choice of EffectMeasure for Binary Outcomes -
Introducing Counterfactual Outcome State Transition
parameters" introduces COST parameters, and argues that
they solve several shortcomings associated with standard
effect measures.

I "Effect Heterogeneity and Variable Selection for
Standardizing Experimental Findings" introduces
standardization formulas for COST parameters, and describes
how this approach relates to "transportation formulas"
derived from Bareinboim and Pearl’s selection diagrams.

I "On the Collapsibility of Causal EffectMeasures" is a short
report on different definitions of collapsibility, and how this
relates to weights used for standardization of effect
measures.



FutureWork

I Extensions to time-to-event data?


