Meta-analysis with a general genetic model: ACTN3 & athletic performance

Damjan Vukcevic

Centre for Systems Genomics University of Melbourne

> 25 May 2017 ViCBiostat Seminar

Overview

Part 1

- Background
- Data
- Model
- Results

Part 2

- Simpler (misspecified) models
- Covariates
- Some properties of the model
- Questions for the audience

Part 1

Background Data Model Results

ACTN3 and muscle fibres

The gene **ACTN3**

Encodes the protein alpha-actinin-3

Expressed in fast twitch muscle fibres

Image: Wikimedia Commons

R577X mutation in ACTN3

ACTN3 Genotype Is Associated with Human Elite Athletic Performance

Nan Yang,¹ Daniel G. MacArthur,^{1,2} Jason P. Gulbin,³ Allan G. Hahn,³ Alan H. Beggs,⁵ Simon Easteal,⁴ and Kathryn North^{1,2}

¹Institute for Neuromuscular Research, Children's Hospital at Westmead and ²Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney; ³Australian Institute of Sport and ⁴Human Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra; and ⁵Genetics Division, Children's Hospital, Boston

'The **gene** for **speed**'

Image: Wikimedia Commons

Loss of *ACTN3* gene function alters mouse muscle metabolism and shows evidence of positive selection in humans

Daniel G MacArthur^{1,2}, Jane T Seto^{1,2}, Joanna M Raftery¹, Kate G Quinlan^{1,2}, Gavin A Huttley³, Jeff W Hook⁴, Frances A Lemckert⁴, Anthony J Kee⁵, Michael R Edwards⁶, Yemima Berman¹, Edna C Hardeman⁵, Peter W Gunning^{2,4}, Simon Easteal³, Nan Yang¹ & Kathryn N North^{1,2}

Aim

Study the effect of the heterozygotes (RX)

Meta-analysis

Novel experiments

Data

13 studies

Case-control design (athletes vs controls)

Phenotype: Elite athletic performance

Genotypes: **rs1815739** (causes $R \rightarrow X$)

Example: (Papadimitriou 2008)

	RR	RX	XX
Athletes	35	26	12
Controls	47	101	33

Data

Frequency of allele X

Number of individuals

Models

Previous meta-analysis

Assumed a recessive model

Alfred et al. 2011

Diverse genetic effects

General model

General model

General model

Study i, individual j, genotype G_{ij}

$$\log \frac{\Pr(\text{athlete}|G_{ij})}{\Pr(\text{control}|G_{ij})} = \mu_i + \beta_i G_{ij} + \gamma_i I(G_{ij} = 1)$$
$$\begin{bmatrix} \beta_i \\ \gamma_i \end{bmatrix} \sim N\left(\begin{bmatrix} \beta \\ \gamma \end{bmatrix}, \begin{bmatrix} \tau_\beta^2 & \rho \tau_\beta \tau_\gamma \\ \rho \tau_\beta \tau_\gamma & \tau_\gamma^2 \end{bmatrix}\right)$$

Use 'default' weakly informative priors

Model space plot

β

Model space plot

Model space plot

RR

RR

Results

Results

Overall mean genetic effect

$$OR_{add} = e^{\hat{\beta}} = \mathbf{1.3} (1.2-1.6)$$

 $OR_{dom} = e^{\hat{\gamma}} = \mathbf{1.0} (0.76-1.3)$

Heterogeneity of effects

$$\hat{\tau}_{\beta}$$
 = **0.17** (0.02–0.36)
 $\hat{\tau}_{\gamma}$ = **0.44** (0.21–0.77)

Summary (Part 1)

- Clear evidence of an association (recapitulates main conclusion from past studies)
- Large heterogeneity of effects, no simple genetic model fits the data
- Additive component relatively consistent across studies
- Dominance component (heterozygote effect)
 highly heterogeneous, especially for Europeans
- Why the heterogeneity?
- Are the covariates useful?

Part 2

Simpler (misspecified) models Covariates Some properties of the model Questions for the audience

Heterogeneity of effects $\hat{\tau} = 0.23 (0.11-0.39)$

R allele freq. = 0.1

R allele freq. = 0.2

R allele freq. = 0.3

R allele freq. = 0.4

R allele freq. = 0.5

R allele freq. = 0.6

R allele freq. = 0.7

R allele freq. = 0.8

R allele freq. = 0.9

Using covariates

Covariates

- 1. Ethnicity
- 2. Sex
- 3. Competition level (international/national)
- 4. Sport (i.e. mix of sports)

Mostly only have per-study summaries Some data are missing (esp. 2) Some covariates only defined for athletes (3 & 4)

Questions

- Stratify the data?
- Should male & female controls be pooled?
- How to cope with athlete-specific covariates?
- Perhaps multinomial logistic regression? (Seems messy...)
- Need to shift to a retrospective likelihood?
- Currently, I do something hacky...

Comparison against covariates

An 'informal assessment' of the impact of covariates

Haven't yet looked at sport (covariate 4)

Sport (covariate 4) is messy...

Study reference	Country of origin	Sex	Athletes (number, % international)
Yang et al. 2003	Australia	M&F	Track and field athletes (≤800m) (n=46), swimmers (≤200m) (n=42), judo athletes (n=9), short-distance track cyclists (n=7), and speed skaters (n=3). (n= 107, 100%)
Niemi & Majamaa 2005	Finland	M&F	Sprinters (100-400m) & field athletes (n= 23, international, n=68 national level^)
Papadimitriou et al. 2008	Greece	M&F	Sprinters (100- 400m), jumpers, throwers and decathletes (international n=44, n=29 national)
Eynon et al. 2009	Israel	M&F	Sprinters (100 to 200m) (n= 26, international, n=55 national)
Massidda et al. 2015	Italy	М	Sprinters (n=16), swimmer (n=1), wrestlers (n=17), power lifters (n=11), artistic gymnasts (n=19) (n=64, 67%)
•••	•••	•••	•••

Prospective vs retrospective

Prospective likelihood:

$$\log \frac{\Pr(\text{athlete}|G)}{\Pr(\text{control}|G)} = \mu + \beta G + \gamma I(G = 1)$$

Retrospective likelihood:

	G=0	G = 1	G = 2
Pr(<i>G</i> control)	${g}_0$	g_1	g_2
Pr(<i>G</i> athlete)	$\frac{g_0}{Z}$	$\frac{g_1r_1}{Z}$	$\frac{g_2 r_2}{Z}$

- The g_i describe the **genotype distribution for controls** (2 free parameters), replacing μ .
- The r_i are **odds ratios**, naturally parameterised by (β, γ) , same as before.
- Z is just a normalisation parameter
- Overall, there is **1 extra parameter**
- Prospective likelihood implicitly requires pairing of cases & controls

Retrospective: potential benefits

Would allow the **control cohorts to partially pool** (via the genotype distribution)

Would allow the **athlete cohorts to be stratified more elegantly** (the odds ratios refer only to an athlete cohort, rather than to an athlete/control pair of cohorts)

Is this the best approach?

Can these be achieved with a prospective likelihood?

Presentation of results

- Main figure is **not** analogous to a forest plot
- Shows the estimates from the **joint model**, rather than per-study models
- Therefore, shrinkage!

Per-study (fixed) effects

Jointly modelled (random) effects

Shrinkage illustration

Points circled in magenta don't appear in the per-study plot

A general model cannot be fitted for those studies, due to the presence of zero genotype counts

β

Per-study (fixed) effects

Jointly modelled (random) effects

Shrinkage illustration

Points circled in magenta don't appear in the per-study plot

A general model cannot be fitted for those studies, due to the presence of zero genotype counts

β

Correlation of effect estimates

- The per-study estimates are correlated
- Correlation depends on the allele frequency
- Should I depict this? With ellipses? With rotated crosses?

Per-study model fits

Interpretation of results

Any ideas beyond just saying "there's substantial heterogeneity in the heterozygote effect"?

Heterogeneity

How should we summarise and represent heterogeneity?

Some ideas:

- Estimate the variance components? (I did this, but it feels too obscure...)
- Work out a **2D analogue** of the **usual heterogeneity measures** used in standard meta-analyses? (Also seems obscure...)
- Calculate a **posterior distribution** over the **three canonical genetic models** (additive, recessive, dominant)?

Summary (Part 2)

- Use of a **general model** led to **clearer insights** and conclusions about the nature of the evidence in the data
- Cause of heterogeneity still unclear, but some ideas still to explore
- Assuming a more restricted model can give rise to spurious heterogeneity

- Still exploring to best ways to:
 - Visualise and present the results
 - Interpret or investigate the heterogeneity
 - Allow partial pooling beyond the case-control pairing

Not discussed today

- Details of the prior distributions
- Stan programming issues
- Previous work on this or similar problems

Some further work

- Investigate if the type of **athletic events** can explain heterogeneity
- Investigate how to evaluate possible biases (e.g. funnel plots)
- Sensitivity analysis (to choice of prior)
- Apply to other data: esp. known **GWAS loci** with **highly variable allele frequency** across populations

Acknowledgements

Centre for Systems Genomics

Stephen Leslie

Clinical Epidemiology & Biostatistics Diana Zannino Susan Donath

Neuromuscular Research Fleur Garton (→ Uni. Qld) Kathryn North

Questions?

...answers??