
Associating with DAGs can be beneficial: 
A tour through counterfactuals, causal graphs, 

challenges and opportunities 

Andrew Forbes 

Monash University 

 
Acknowledgements: 
Dr Susan Shortreed, GHC, USA 

 



Outline 

 Counterfactuals (potential outcomes) 

 Defining causal effects 

 Estimation,  assumptions 

 Causal graphs and longitudinal studies 

 Mechanisms 

 Comments 

 Running example: Physical activity and CVD 

 

 

 

2 



DAG ? 

PA0 
BS1 PA1 

U 

Y 

Directed Acyclic Graph 

Someone who dresses or 

behaves  

in an unfashionable or 

unstylish manner 

 

Wool on a sheep's rear quarters 

which is dirty with mud and excreta 

 

No photo?? 
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Counterfactuals 
[potential outcomes] 

Neyman (1923)        Rubin (1974) 

Rubin Causal Model 



John has a headache 

Will it help if he 
takes a Panadol? 
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He took a Panadol  
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Over the next 20 minutes … 

Did the panadol 
cause his 
headache relief? 

Outcome if he 
didn’t take 
panadol ? 
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Potential outcomes Y(0), Y(1) 

 Y(a) = potential outcome under assignment of  
  „treatment‟   A=a  (0, 1) 

 Causal effect = Y(1)-Y(0) = difference when intervene   
 

 Observe Y(1) = Y = 1   
 

 Y(0) unobserved  
 
 
 
 OR Y(0)=1  ?? Y(0)=0    ?? 
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Population (Average) Causal Effect 

 E[ Y(1) – Y(0) ] 

 Average outcome if all „treated‟ compared to all „not treated‟ 

 Can estimate in large perfectly conducted randomised trials 

 Control and treatment groups are „exchangeable‟ 

 Trt groups alike wrt all factors apart from treatment 

 Control group represents outcome of treated group if had not been treated 

 P( Y(0)=1 | A=1)  =  P(Y(0)=1 | A=0)     =    P(Y(0)=1 )  

   Y(0)    A  Y(0) , Y(1)   A  
 Association in such RCT = Causation 

 Observational studies   ?? 

 Exposed and unexposed not exchangeable  [PA vs no PA]  

 How to mimic a randomised trial of exposure ? 
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Why are potential outcomes useful? 

 Enables clear definition of causal effects 

 

 Enables clear statement of assumptions required for causal 

inference 

 

 Provides a framework for developing and assessing estimation 

methods 

 

 But causal framework not a ‘magic pill’ for inadequate data or design 

 - in best case is still based on untestable assumptions 
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Assumptions for valid causal 

inference 



Fundamental assumptions 

 Consistency:     

 Observed outcome is one of the counterfactual outcomes [consistent] 

 Y=Y(A) :  Potential outcome if observed exposure was assigned is the 
observed outcome 
links observed and counterfactuals 

   No multiple versions of treatment/exposure   

 Positivity 

 Every individual must be able in theory to have each exposure  [a=0,1] 

 Conditional exchangeability/randomisation given X 

 Y(0), Y(1)   A  | X   = no unmeasured confounders 

 Not testable - Design, design, design!!!   

 Correct functional form of models  (no „misspecification‟) 
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 Consistency:    

 “We know what happens when the treated are assigned treatment” 

 Y=Y(A) 

 

 Positivity:  true by design   0<P(A=1)<1 

 

 Exchangeability:  true by randomisation 

 

 Models:  none needed 

 

 

E[Y(1)] = E[ Y(1) | A=1] = E[Y | A=1] 

Randomised trials  

Exch, 

Pos 
Cons 



Defining causal effects in observational studies ? 

 Is  Y(1) – Y(0)   „unambiguous‟  ? 
 

 Non-randomised treatments 
 Can easily conceptualise assigning treatment or not 

 

 Exposures: 

 eg Physical activity – a choice, action: can be intervened upon / 
manipulated    

 Body size – an attribute, biomarker    (Hernan+Taubman 2008) 

 Potential outcomes ill-defined – will vary with manipulation for altering 
body size    

 Diet, starvation, gastric banding     “multiple versions” 

 Consistency violated 
 

 “No causation without manipulation” 
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Estimation when assumptions hold: 

 Exposure  A= 0 or 1     Y binary 

 E[Y(1) – Y(0) ]  

 X= all confounders :   Y(0), Y(1)  A | X 

 

E[Y(1)] = EX(E[ Y(1) | X]) = EX(E[Y(1) | X, A=1]) 

 

  = EX(E[Y | X, A=1]) 

  = (directly) standardised risk in A=1 

  = G-computation (Robins 1986) 

 

Causal effect = Difference of standardized risks  

Exch, 

Pos 

Cons 
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Methods for confounding adjustment 
Propensity scores, inverse probability weighting (IPW) 



Propensity scores (Rosenbaum+Rubin 1983) 

 Propensity score e(X) = P(A=1|X) 

 Regression model for treatment assignment mechanism 

 Exchangeability given X then exchangeability given scalar e(X) 

 Balance:    X  A | e(X) 

 Stratify,  adjust,  match using propensity score 

 

 No „magic‟ to propensity scores 

 With large enough sample size can do standardisation or 

regression model given X  to estimate E[Y(1) – Y(0) ] 

 Simply a useful method for “finite” samples 
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Inverse probability weighting (IPW) 

 Sample surveys  (Horvitz-Thompson) 

 Example:  Pr(Trt|Male) = 1/3  Pr(Trt|Female)=1/4 

 To estimate E[Y(1)] : 
Weight treated males by 3, treated females by 4 

 To estimate E[Y(0)] : 
Weight untreated males by 3/2,  untreated females by 4/3 

 

 Generally, estimate prob of treatment actually received as function of X   
=  e(X) or 1-e(X) 

 Weight by reciprocal of this probability 
 

 In weighted “pseudo-population” trt and X uncorrelated 

 Can estimate E[Y(1) - Y(0)] using weighted analysis 

 

 Other uses: Risk difference and ratio regression, odds ratios with 
propensity scores  (Ukoumunne et al 2010,  Forbes et al 2008) 
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Longitudinal studies and causal diagrams 
 
Robins et al (1986+)           Pearl (2000+) 

 
 
 
 
 

 
 
 Hernan (2000+) 
 
 



Longitudinal studies 

 Exposure and covariates can vary over time 

 Suppose 2 time points t=0, 1 

 Assume single Y measured at end 

 Potential outcomes – defined for each possible exposure 

sequence  (a0, a1) 

 Fixed/static exposure   
 Often interested in always versus never exposed  (1, 1) vs (0, 0) 

 Average causal effect  if   E[Y(1, 1)]  ≠  E[Y(0,0)] 
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Causal Directed Acyclic Graphs 

21 

 Encodes causal assumptions 

 Nodes are random variables 

 Arrows reflect (direct) causal effects,   absence=strong assumption 

 Common causes of two variables must be included 

 Here no direct or indirect effect of exposure (PA) on CVD 

PA0 BS1- PA1 

U 

Y 

BS=Body Size 

Note:  Well defined interventions only needed for nodes of causes of interest 



DAGs and usefulness 

 Substantive concept map 

 intuitive 

 Source of biases (Hernan et al) 

 Confounding  

 Selection bias 

 Measurement error 

 Analysis approaches 

 Direct effects / mediation 

 Correspondence with counterfactuals 

 Theorem in DAGs = theorem in counterfactuals  (Pearl 2000, 2009) 
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DAG Background 

An observed association between two random variables X and Y can 

be due to: 

 Chance  

 X causes Y or Y causes X 

 X and Y share a common cause (confounding) 

 A third variable was conditioned on which is a consequence of 

both X and Y (ie a common effect of X and Y)  

 

V 

X Y 

X 

Y 

Z 

Height and speed: basketball prowess 
 X = height,  Y = speed,  Z = pro basketball player (=1) 

 short pro players must be very fast!   -ve assoc b/w X and Y 

 

Z is called a “collider”:  arrows collide at Z:  XZY 
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 Observed associations arise from transmission along paths 

 A ”backdoor” path exists from PA1 to Y:  PA1  BS1  U  Y 

  Observed association b/w PA1 and Y    

 Confounding by U   (common cause) 

 Conditioning on a non-collider blocks the path 

 Associations are not transmitted across colliders, unless the collider 

is conditioned on   eg PA0  BS1  U  

Paths and observed associations 

PA0 BS1 PA1 

U 

Y 

BS=Body Size 
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Aside:  DAGs and IPW 

 IPW creates pseudopopulation where X is balanced 

between exposure groups 

 Initially 

 

 

 IPW: regress A on X 

 X and A unassociated in weighted population 

 

 

X 

A Y 

X 

A Y 

X 

A Y 
= 
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Estimation of PA effect    (1,1) vs (0,0) 

 Effect of PA1  on CVD : need to control for U  
 obtained by conditioning on BS1  

 Conditioning on  BS1  induces assoc b/w PA0  and U ! 

  Adjust or not, conventional methods biased 

 Remedy – don‟t condition on BS: use IPW of PA1 on BS1 to 

break path BS1   PA1  

PA0 BS1- PA1 

U 

Y 

BS=Body Size 

U = Unmeasured 
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Marginal structural models 

 Extension of IPW to longitudinal setting 

 Weights are reciprocal of probability of observed exposure history 

conditional on past covariate history  

 Creates pseudopopulation where exposure not confounded at any 

time   [“sequential randomisation”] 

 “Structural” outcome model for single counterfactual exposure 

history 

   eg  E[Y(a0,a1)] =  g(a0 , a1 ) 

 Weighted regression, robust SEs 
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Framingham Heart Study:  Effect of PA 

 National Heart Institute enrolled 5,209 men and women 
for longitudinal study of CVD in 1948 

 Risk factors collected every 2 years 

 Physical activity collected 3 times, 16 years apart 

 40 years of follow-up 

 Interested in effects of “long term” PA 
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Physical Activity and covariates 

 Interested in active versus inactive 

 Create binary PA based on Aust recommendations 

 derived from # of hours spent at different activity levels  

 

 3 categories of PA history at time t 
1.   Always Inactive up to t 

2.   Always Active up to t 

3.   Mixed Activity Levels up to t 

 

 Set of covariates included in analysis:  (2 years prior to PA)  

 sex, type of job, education, birth country, BMI at age 25, age,  BMI, comorbidity (arthritis, LVH, 

ankle edema, pulmonary disease,  diabetes, cancer), smoking status, hypertension status, 

marital status, alcohol use, blood glucose level 
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Estimating “lifetime” PA effect 

 Standard time dependent Cox model biased for lifetime PA 

 Use marginal structural model 
 

 Weights at t: PA history at time t as function of past PA and all 
covariates 
 Also include model for missing data and loss to followup 

 Pseudo popn with no confounding and no missing data and no loss to 
followup 
 

 Structural Cox model:                          
 

 

  e = HR for always vs never active 

 
Estimation by weighted Cox regression  [pooled logistic] 
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 Little difference in CC:  time dependent confounding perhaps not 

major problem! 

 OR:  Time dept confounding is swamped by unmeasured 

confounding!    

 Model decision to be physically active  ?? 

 Generalisable to other lifestyle exposures?? 

 PA measurement error? 

 How handled missing data had greater effect than handling 

confounding! 

Results: CVD Mortality  

Model HR [95% CI] 

Coxadj  Lifetime PA  -CC 0.76 [0.63, 0.91] 

MSM – CC 0.75 [0.60, 0.94] 

MSM – censoring model 0.65 [0.43, 0.97] 
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More than „total‟ effect: 

Mechanisms of action 



Mechanisms 

So far: Total causal effects 

 No examination of mechanism 

 

Mechanisms: 

 Often substantively interesting 

 “Direct” and “indirect” effects,  mediation 

 Eg  Indirect:   PA  BMI (2 years later)  CVD 

  Direct:   PA  CVD directly 
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Mechanisms and direct effects 

 Direct effect of A on Y  “Standard” approach:  (Baron+Kenny 1986, 18000 

cites) 

 regress Y on A, then Y on A and M 

 DAG rules can help 

 Eg Here M a collider, so need to control for W  

 If W a consequence of A then 

 no good! 

 

 

 

 Implicit is ability to intervene on M 

 “Controlled” and “natural” direct effects   (IPW, G-comp) 

 Sequential conditional exchangeability assumptions needed + more!   

(Petersen 2006) 

 

A M Y 

W 

X 
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When M is an attribute 

 eg BMI - manipulation ill-defined 

 Principal stratification approach  (Frangakis+Rubin 2002) 

 Regard BMI as counterfactual outcome – not intervened upon 

 eg effect of PA on CVD for people who would have high BMI if don’t exercise 
 
E (Y(1) | BMI(0) = H) vs E( Y(0) | BMI(0) = H)  

 Not identified!  Needs assumptions to provide bounds. (Joffe 2007, Sjolander 2009) 

 

 Similar issues:  “Complier Average Causal effect” , “Truncation by 
death” 

 Varying  approaches for identifiability 

 which ones make sense for practice? 

 

 Conclusion:   Mechanisms are difficult to estimate!! 

 Much more than multiple regression! 
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Conclusions:  opportunities 

 Causal framework has provides lots of new avenues for work 

 Always challenging! Needs sensible assumptions to enable practical use 
 

In ViCBiostat program: 

 Measurement error in exposures 

 Dynamic interventions in longitudinal data:  G-computation extensions 

 Principal stratification  – RCTs and obs studies 
 

General: 

 New methods, sensitivity to assumptions 

 Maths-heavy or applied:    needs more application papers ! 

 Mechanisms!   Alternative approaches? 

 Many subject matter areas to apply methods 
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