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BACKGROUND & IVIOTIVATION

» Causal effects (CE) are typically defined as a contrast of mean potential ol o

SIMULATION STUDY

ILLUSTRATIVE EXAMPLE

outcomes under exposure versus no exposure. s Objective: Investigate the performance of each confounding-adjustment method in a realistic > We apIIO'IIIIe‘j the propﬁ.slzd Lnehthods to the lI_SAE Iszll:]dy c[il]’ to estimate the CE of maternal
. . : . mental illness on a child’s behaviour in early childhood.
» There are many established methods to adjust for potential confounding bias : setting and under varying degrees of skewness in the outcome variable. Y

due to the lack of randomisation. » Estimates were similar for the IPW-based and G-comp methods.

» However, epidemiological studies may suffer from skewed continuous
outcome data, for which the mean may no longer be a meaningful summary K Cnsspasconwaes

1. STUuDY DESIGN » The QR method estimated a lower CE, although was restricted to the assumption of a linear
CE across confounder substrata (not realistic for this application).

statistic. Figure 1. Distribution of .
outcome for LSAC example [1].

Motivated by an observational study of kindergarten children (LSAC[4]) estimating the causal
effect of maternal mental health (binary indicator) on a child’s behaviour in early childhood
(measured by SDQ score; positively skewed, Figure 1).

1. IGNORE the skewness and use the mean as summary statistic? * Generated datasets consisting of:

v" Appropriate when the mean remains of interest despite the skewness > X: Exposure variable (binary) T -
v" Allows established confounding-adjustment methods to be applied FEXP y

> But how do we estimate causal effects for skewed outcomes?

] . . i L 5] It 1 1
% Not appropriate if interested in central value of the outcome distribution » Y: Skewed outcome variable (continuous), drawn from a log-normal distribution

» C: Confounder variables (3 binary, 2 continuous)
2. TRANSFORM the outcome to a more symmetric distribution?

v Meanis i | | lish h @ 17 * T *
r ea.n is interpretable ?nd can apply t?stab ished methods Explored 4 skewness scenarios (SS) Per SS: Replicated under r
J *  Asuitable transformation may not exist - Different degrees of skewness in Y ) 1000 datasets of —) weak and strong
X More complex interpretation of CEs than on the original scale - SS1 = weakest, SS4=strongest 1000 observations confounding *

3. DEFINE the causal effect as a contrast of median potential outcomes?

v Widely acknowledged definition of CE [2] T
S51 8§82 S83 554
X Limited understanding of confounding-adjustment methods

-1 1 - -

Exposure

X Application of methods in practice is scarce - ; ; ; ; ; .
@ ﬁ %”p LUnadjusted QR Weighted QR IPW Estimator G-comp (mean) G-comp (med)
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Study Aim: Describe and evaluate confounding-adjustment methods to estimate the causal difference in f . [ et
|

Figure 4. Estimates for § obtained on the LSAC study under each proposed method, alongside the unadjusted estimate.

median potential outcomes, with the aim to increase understanding of their utility and encourage T
application in practice where appropriate.
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Figure 2. Log-normal distributions used to generate Y under each skewness scenario.

PROPOSED METHODS 2. SIMULATION RESULTS
CONCLUSIONS

> We consider an observational study with continuous skewed outcome variable Y, a binary * Results were similar for both levels of confounding, so weak (relative bias fixed at 10%)
exposure variable X, and a vector of confounder variables C. presented only.
> The causal effect of interest & is defined as the difference between the median counterfactual « Standard errors and confidence intervals were estimating using a non-parametric bootstrap » In the presence of skewed outcome data, the common approach to “ignore or transform”

approach. may not be optimal, and defining the causal effect using median potential outcomes may be

outcome under each exposure level: § = m[Y*=1] — m[Y*=?] i
more appropriate.

» To estimate 6 from observational data, we identified three singly-robust confounding-adjustment

methods in the literature (methods 1-3), alongside a proposed method (4). SS1 $S2 583 sS4 Method » We identified and described a number of confounding-adjustment methods to estimate this
~ 41 —— % opdusted causal effect.
METHOD 1: MULTIVARIABLE QUANTILE REGRESSION T ' b Weighted QR _ _ _ _ ) )
_ _ _ N . . * Ff| s 0 IPW estimator » Our simulation study and illustrative example suggest the G-computation (medians)
1. Fit a quantile regression (QR) model of Y conditional on X and C. : ¢ : G-comp (mean) . . . i . . :
2. Using the 50t quantile, the coefficient for X is an unbiased estimate of § (under certain assumptions)[3]. T i | &l G-comp (med) approach is the best-performing confounding-adjustment method to estimate this CE using
o 0 .%. EIE + + . . B B l H observational data.
e ~ s : Eﬂ
METHOD 2: WEIGHTED QUANTILE REGRESSION . AL T I » Future work: Explore other data generation mechanisms such as those seen in previous
- Uses the framework of inverse-probability weighting to create a pseudo-population. - r = L 1 studies, and compare consistency of results [3].
1. Fita QR model Y ~ X, with observations weighted inversely proportional to the propensity score. 16 ——
2. Using the 50t quantile, the coefficient for X is a consistent estimator of & (under certain assumptions)[3]. g . - -
o J a | ot ____ - —
a [T 7 7 T
e B g - - - .
MEeTHOD 3: IPW ESTIMATOR B . . .
- Like method 2, uses the framework of inverse-probability weighting. “ "o =3 - REFERENCES
- Instead of using a weighted QR model, uses a direct derivation of a weighted z Wil (Y; < y) = 0.5 ) S _ o _
estimator[4], by solving for y under X=0,1 weighting observations by W, ;. i=1 Figure 3. (a) Bias distribution and (b) associated relative bias (%) across 1000 datasets per skewness scenario (SS). [1] Sanson A, Nicholson J, Ungerer J, Wilson K, Zubrick S. Introducing the Longitudinal Study of Australian Children.
N\ J 2002.
e ~ [2] Hernan M, A definition of causal effect for epidemiological research. Journal of Epidemiology & Community Health.
METHOD 4: APPROXIMATE G-COMPUTATION . 2004. 58(4):265-271.

Estimates were the least biased using the G-comp (med) method, with the relative bias
-> Heuristically motivated based on G-computation used when the CE is defined using the mean. substantially reduced.

1. Fit a QR model of Y conditional on X and C.

[3] Sun S, Moodie E, Neslehova J. Causal inference for quantile treatment effects. Environmetrics. 2021. e2668.
[4] Zhang Z, Chen Z, Troendle J, Zhang J. Causal inference on quantiles with an obstetric application. Biometrics. 2012.

2. Predict the median outcome under X=0,1 for every observation. Other methods had higher bias or offered little improvement compared to the unadjusted 68:697-706.

3. Aggregate predictions across each exposure group to estimate m[Y*=1] and m[Y*=°]. approach.
- We conjecture § is approximated as the difference in aggregated predictions under each exposure level. e Variation in estimates increased for a higher degree of skewness in Y. ACKNOWLEDGEMENTS
- We considered two aggregation approaches: e Coverage probability was close to nominal level for all methods and across all skewness

Funding to present this research was gratefully received from the Clinical Epidemiology and Biostatistics Unit, Murdoch

G-comp (mean) = calculate the mean of predictions : . , .
P P scenarios. Children’s Research Institute.

G-comp (med) = calculate the median of predictions

V:CB:ostat




