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➢ Causal effects (CE) are typically defined as a contrast of mean potential 
outcomes under exposure versus no exposure.

➢ There are many established methods to adjust for potential confounding bias 
due to the lack of randomisation. 

➢ However, epidemiological studies may suffer from skewed continuous 
outcome data, for which the mean may no longer be a meaningful summary 
statistic. 

BACKGROUND & MOTIVATION

Study Aim: Describe and evaluate confounding-adjustment methods to estimate the causal difference in 
median potential outcomes, with the aim to increase understanding of their utility and encourage 
application in practice where appropriate. 

➢ But how do we estimate causal effects for skewed outcomes? 

Figure 1. Distribution of 
outcome for LSAC example [1]. 

PROPOSED METHODS

➢ We consider an observational study with continuous skewed outcome variable Y, a binary 
exposure variable X, and a vector of confounder variables C. 

➢ The causal effect of interest 𝛿 is defined as the difference between the median counterfactual 
outcome under each exposure level:   𝛿 = 𝑚 Y𝑥=1 −𝑚 Y𝑥=0

➢ To estimate 𝛿 from observational data, we identified three singly-robust confounding-adjustment 
methods in the literature (methods 1-3), alongside a proposed method (4). 

1. Fit a quantile regression (QR) model of Y conditional on X and C. 
2. Using the 50th quantile, the coefficient for X is an unbiased estimate of 𝛿 (under certain assumptions)[3].  

METHOD 1:   MULTIVARIABLE QUANTILE REGRESSION

→ Uses the framework of inverse-probability weighting to create a pseudo-population. 

1. Fit a QR model Y ∼ X, with observations weighted inversely proportional to the propensity score.
2. Using the 50th quantile, the coefficient for X is a consistent estimator of 𝛿 (under certain assumptions)[3].  

METHOD 2:   WEIGHTED QUANTILE REGRESSION

→ Like method 2, uses the framework of inverse-probability weighting. 
→ Instead of using a weighted QR model, uses a direct derivation of a weighted 

estimator[4], by solving for y under X=0,1 weighting observations by 𝑊𝑥,𝑖. 

METHOD 3:   IPW ESTIMATOR

→ Heuristically motivated based on G-computation used when the CE is defined using the mean. 

1. Fit a QR model of Y conditional on X and C. 
2. Predict the median outcome under X=0,1 for every observation. 
3. Aggregate predictions across each exposure group to estimate 𝑚 Y𝑥=1 and 𝑚 Y𝑥=0 .

→ We conjecture 𝛿 is approximated as the difference in aggregated predictions under each exposure level. 

→  We considered two aggregation approaches: 
G-comp (mean) = calculate the mean of predictions
G-comp (med) = calculate the median of predictions

METHOD 4:   APPROXIMATE G-COMPUTATION
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✓ Appropriate when the mean remains of interest despite the skewness

✓ Allows established confounding-adjustment methods to be applied

 Not appropriate if interested in central value of the outcome distribution

IGNORE the skewness and use the mean as summary statistic? 1. 

✓ Mean is interpretable and can apply established methods

 A suitable transformation may not exist

 More complex interpretation of CEs than on the original scale

TRANSFORM the outcome to a more symmetric distribution?  2. 

DEFINE the causal effect as a contrast of median potential outcomes?3. 
✓ Widely acknowledged definition of CE [2]

 Limited understanding of confounding-adjustment methods

 Application of methods in practice is scarce

Objective: Investigate the performance of each confounding-adjustment method in a realistic 
setting and under varying degrees of skewness in the outcome variable. 

• Estimates were the least biased using the G-comp (med) method, with the relative bias 
substantially reduced. 

• Other methods had higher bias or offered little improvement compared to the unadjusted 
approach. 

• Variation in estimates increased for a higher degree of skewness in Y. 

• Coverage probability was close to nominal level for all methods and across all skewness 
scenarios. 

2. SIMULATION RESULTS

1. STUDY DESIGN

• Motivated by an observational study of kindergarten children (LSAC[4]) estimating the causal 
effect of maternal mental health (binary indicator) on a child’s behaviour in early childhood 
(measured by SDQ score; positively skewed, Figure 1). 

• Generated datasets consisting of: 

Figure 2. Log-normal distributions used to generate Y under each skewness scenario.

Per SS: 
1000 datasets of 

1000 observations

Replicated under 
weak and strong

confounding

Explored 4 skewness scenarios (SS)
→ Different degrees of skewness in Y
→ SS1 = weakest, SS4=strongest

➢ X: Exposure variable (binary)

➢ Y: Skewed outcome variable (continuous), drawn from a log-normal distribution

➢ C: Confounder variables (3 binary, 2 continuous)

SIMULATION STUDY
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Figure 3. (a) Bias distribution and (b) associated relative bias (%) across 1000 datasets per skewness scenario (SS). 

• Results were similar for both levels of confounding, so weak (relative bias fixed at 10%) 
presented only.

• Standard errors and confidence intervals were estimating using a non-parametric bootstrap 
approach. 

ILLUSTRATIVE EXAMPLE

➢ We applied the proposed methods to the LSAC study [1], to estimate the CE of maternal 
mental illness on a child’s behaviour in early childhood. 

➢ Estimates were similar for the IPW-based and G-comp methods.

➢ The QR method estimated a lower CE, although was restricted to the assumption of a linear 
CE across confounder substrata (not realistic for this application). 

Figure 4. Estimates for 𝛿 obtained on the LSAC study under each proposed method, alongside the unadjusted estimate.  
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➢ In the presence of skewed outcome data, the common approach to “ignore or transform”
may not be optimal, and defining the causal effect using median potential outcomes may be 
more appropriate. 

➢ We identified and described a number of confounding-adjustment methods to estimate this 
causal effect. 

➢ Our simulation study and illustrative example suggest the G-computation (medians) 
approach is the best-performing confounding-adjustment method to estimate this CE using 
observational data.

➢ Future work: Explore other data generation mechanisms such as those seen in previous 
studies, and compare consistency of results [3]. 

CONCLUSIONS


